\(\frac{1}{2}.2^n+4.2=9.2^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(2^n.\left(\frac{1}{2}.4\right)=288\)
\(2^n.2=288\)
\(2^n=288:2\)
\(2^n=144\)
Suy ra n ko tìm được
Ta có :
\(\frac{1}{2}\cdot2^n+4\cdot2^n=\frac{9}{2}\cdot2^5\)
\(=>\left(\frac{1}{2}+4\right)\cdot2^n=9\cdot2^5\)
\(=>\left(\frac{1}{2}+\frac{8}{2}\right)\cdot2^n=9\cdot2^5\)
\(=>\frac{9}{2}\cdot2^n=\frac{9}{2}\cdot2^5\)
\(=>2^n=2^5\)
\(=>n=5\)
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
\(\frac{1}{2}\cdot2^n+4.2^n=9.2^5\)
\(2^n\left(\frac{1}{2}+4\right)=9.32\)
\(2^n\left(\frac{1}{2}+\frac{8}{2}\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=288\cdot\frac{2}{9}\)
\(2^n=64\)
\(2^n=2^6\)
=> n = 6
vậy n = 6
\(\frac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(=>\left(\frac{1}{2}+4\right)\cdot2^n=\frac{9}{2}\cdot2^6\)
\(=>\frac{9}{2}\cdot2^n=\frac{9}{2}\cdot2^6\)
\(=>2^n=2^6\)
\(=>n=6\)
Ta có: \(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}=64\)
Mà \(64=2^6\)
Nên \(2^n=2^6\)
=> n = 6
Vậy n = 6