Cho phân số a/b > 1.
Với m là số tự nhiên : m < b chứng tỏ:
a -m/b - m > a/b > a+m/b+m (so sánh phần hơn đơn vị)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Giải}\)
\(\text{Vì a phần b bé hơn 1 nên b lớn hơn a đặt: b=a+n}\)
\(\text{suy ra a phần b=1-n phần b}\)
\(\text{a+m phần b+m=1-n:(b+m) vì: b bé hơn b cộng m nên:}\)
\(\text{n:b bé hơn: n:(b+m)}\)
\(\text{suy ra a:b bé hơn (a+m):(b+m). Với m=0 thì 2 phân số trên bằng nhau}\)
\(\frac{a}{b}< 1\Rightarrow a< b\)
Với m>0 thì \(a\times m< b\times m\)
\(a\times b+a\times m< a\times b+b\times m\)
\(a\times\left(b+m\right)< b\left(a+m\right)\)
\(\frac{a}{b}< \frac{a+m}{b+m}\)
Vậy..........
ta ví dụ a/b = 5/4
ta có 5/4 ... 5+1/4+1
= 5/4 ... 6/5
ta quy đồng được :5/4 = 25/20 ; 6/5 = 24/20
=> a/b > a+m/b+m
Ta có : a/b = a*(b+m)/b*(b+m) = ab+am/b*(b+m)
a+m/b+m = (a+m)*b/(b+m)*b = ab+bm/b*(b+m)
Vì a/b > 1 => a > b hay am > bm
Vậy ab+am/b*(b+m) > ab+bm/b*(b+m) Hay a/b > a+m/b+m
\(\frac{a}{b}-\frac{a+m}{b+m}=\frac{ab+am-ab-bm}{b\left(b+m\right)}=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)
\(\frac{a}{b}>1\Rightarrow a>b>0\)
Nếu \(m>0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\).
Nếu \(m< 0\)thì \(\frac{m\left(a-b\right)}{b\left(b+m\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\).
a) \(a>b\Rightarrow3a>3b\Rightarrow-3a<-3b\)
b) \(m-5>m-7\)
c) Gọi phân số cần tìm là \(\frac{a}{a+3}\)
Ta có \(\frac{a+2}{a+5}=\frac{1}{2}\Rightarrow2a+4=a+5\Rightarrow2a-a=5-4\Rightarrow a=1\)
Vậy phân số cần tìm là \(\frac{1}{4}\)
Câu này lớp 7
Ta có : a/b > 1
=> a > b > 0
=> a ; b \(\in N\)
Ta có : \(\frac{a}{b}=\frac{a.\left(b+m\right)}{b\left(b+m\right)}=\frac{a.b+a.m}{b^2+b.m}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right).b}=\frac{a.b+b.m}{b^2+b.m}\)
Vì a > b => ( a.b + a.m ) > ( a.b + b.m )
=> \(\frac{a.b+a.m}{b^2+b.m}>\frac{a.b+b.m}{b^2+b.m}\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
Không phải,câu này là toán nâng cao lớp 5 mà.Cô giáo mik in cho cả quyển.