Cho biết \(1^2+2^2+3^2+4^2+...+10^2=385\)
Tính A = \(3^2+6^2+9^2+...+30^2.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=3^2(1^2+2^2+...+10^2)
=9*385
=3465
b: B=2^3(1^3+2^3+...+10^3)
=8*3025
=24200
A = \(2^2.\left(1^2+2^2+3^2+...+10^2\right)=4.385=1540\)
B=\(3^2.\left(1^2+2^2+3^2+...+10^2\right)=385.9=3465\)
\(S=2^2+4^2+....+20^2=?\)
\(=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)
\(=2^2.1^2+2^2.2^2+2^2.2^3+...+2^2.10^2\)
\(=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)
\(=2^2.385\)
\(=4.385\)
\(=1540\)
S=22+42+...+202
=> 1/2 .S=12+22+...+102
=> 1/2 .S=385
=> S = 385 . 2
=> S = 770
\(P=3^2+6^2+9^2+...+30^2\)
\(=\left(1.3\right)^2+\left(2.3\right)^2+\left(3.3\right)^2+...+\left(10.3\right)^2\)
\(=\left(1^2+2^2+3^2+...+10^2\right).3^2\)
\(=385.9\)
\(=3465\)
A = 3² + 6² + 9² + ... + 30²
= (3.1)² + (3.2)² + (3.3)² + ... + (3.10)²
= 3².(1² + 2² + 3² + ... + 10²)
= 9.385
= 3465
Lời giải:
$S=10^2+(10.2)^2+(10.3)^2+...+(10.9)^2+(10.10)^2$
$=10^2(1^2+2^2+3^2+...+9^2+10^2)$
$=100.385=38500$
Ta có : 12+22+32+...+92+102=385
22+42+62+...+202=22.12+22.22+22.32+....+22.92+22.102
=22.(11+22+32+....+92+102)
=4.385
=1540
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385 = 1540
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Ta có : 12 + 22 + 32 + ... + 102 = 385
=> 32 . ( 12 + 22 + 32 + ... + 102 ) = 32 . 385
=> ( 32 . 12 ) + ( 32 . 22 ) + ( 32 . 32 ) + ... + ( 32 . 102 ) = 9 . 385
=> ( 3 . 1 )2 + ( 3 . 2 )2 + ( 3 . 3 )2 + ... + ( 3 . 10 )2 = 3465
=> 32 + 62 + 92 + ... + 302 = 3465
=> A = 3465
\(1^2+2^2+3^2+...+10^2=385\)
\(3^2+6^2+9^2+...+30^2=3^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(\Rightarrow A=385\cdot3^2=385\cdot9=3465\)