Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a, Ta có : \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}-\left(x-y\right)=4-10=-6\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=x-6\\\left(x+x-6\right)+2\left(x-x+6\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=x-6\\x+x-6+12=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=x-6\\2x=-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=-\frac{1}{2}-6=-\frac{13}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất là \(\left(x;y\right)=\left(-\frac{1}{2};-\frac{13}{2}\right)\)
b, ĐKXĐ : \(\left\{{}\begin{matrix}x-2y\ne0\\x+2y\ne0\end{matrix}\right.\)
=> \(x\ne\pm2y\)
- Ta có : \(\left\{{}\begin{matrix}\frac{6}{x-2y}+\frac{2}{x+2y}=3\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{6}{x-2y}+\frac{2}{x+2y}=3\left(I\right)\\\frac{6}{x-2y}+\frac{8}{x+2y}=-2\left(II\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{12}{x-2y}+\frac{4}{x+2y}=6\left(III\right)\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\left(IV\right)\end{matrix}\right.\)
- Lấy ( I ) - ( II ) và ( III ) - ( IV ) ta được hệ phương trình :
\(\left\{{}\begin{matrix}-\frac{6}{x+2y}=5\\\frac{9}{x-2y}=7\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+10y=-6\\7x-14y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}35x+70y=-42\\35x-70y=45\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}-\frac{6}{x+2y}=5\\140y=-87\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}-\frac{6}{x-\frac{174}{140}}=5\\y=-\frac{87}{140}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x-\frac{870}{140}=-6\\y=-\frac{87}{140}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{3}{70}\\y=-\frac{87}{140}\end{matrix}\right.\)
Vậy hệ phương trình trên có nghiệm duy nhất là \(\left(x;y\right)=\left\{\frac{3}{70};-\frac{87}{140}\right\}\)
ĐKXĐ : \(\left\{{}\begin{matrix}4-x\ne0\\3-2y\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne4\\y\ne\frac{3}{2}\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}\frac{2x}{4-x}-\frac{5y}{3-2y}=-4\\\frac{3x}{4-x}-\frac{2y}{3-2y}=5\end{matrix}\right.\)
- Đặt \(\frac{1}{4-x}=a,\frac{1}{3-2y}=b\) ta được hệ phương trình :
\(\left\{{}\begin{matrix}2ax-5by=-4\\3ax-2by=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}6ax-15by=-12\\6ax-4by=10\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2ax-5by=-4\\-11by=-22\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2ax-10=-4\\by=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}ax=3\\by=2\end{matrix}\right.\)
- Thay lại \(\frac{1}{4-x}=a,\frac{1}{3-2y}=b\) vào hệ phương trình trên ta được :
\(\left\{{}\begin{matrix}\frac{x}{4-x}=3\\\frac{y}{3-2y}=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12-3x\\y=6-4y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4x=12\\5y=6\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=3\\y=\frac{6}{5}\end{matrix}\right.\) ( TM )
Vậy hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(3,\frac{6}{5}\right)\)
\(hpt\Leftrightarrow\hept{\begin{cases}\frac{20}{x+2y}-\frac{5}{x-2y}=5\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{8}{x-2y}=-4\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}\)
\(\hept{\begin{cases}\frac{1}{x+y-2}+1+\frac{4}{x+2y}=3\\\frac{x+y}{x+y-2}-1-\frac{8}{x+2y}=1-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y-2}+\frac{4}{x+2y}=2\\\frac{2}{x+y-2}-\frac{8}{x+2y}=0\end{cases}}\)
đén đay bn đặt \(\frac{1}{x+y-2}=a;\frac{1}{x+2y}=b\)
hpt = ..... =.=
bài nayy hình như thiếu dữ kiện ,...
\(\frac{x+2y}{3}=\frac{x-1}{12}=\frac{3}{4}\)