K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

=>\(\frac{S}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n+1}}\)

=> \(\frac{S}{2}-S=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{n+1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^n}\right)\)

=> \(-\frac{S}{2}=\frac{1}{2^{n+1}}-1\)

=> S= \(2-\frac{1}{2^n}\)

20 tháng 4 2020

khó quá làm sao mà trả lời đc

20 tháng 4 2020

Vắt óc đi

24 tháng 2 2019

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

24 tháng 2 2019

   \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{64}{64}-\frac{1}{64}=\frac{63}{64}\)

27 tháng 8 2018

=127/128

~ chúc bn hok tốt ~

27 tháng 8 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}\)

\(=\frac{126}{128}=\frac{63}{64}\)

8 tháng 7 2017

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=\frac{1+1+1+1+1+1+1}{2}\)

\(=\frac{7}{2}\)

8 tháng 7 2017

Đặt  \(T=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(T=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)\)

\(\Rightarrow T=1-\frac{1}{128}=\frac{127}{128}\)

24 tháng 7 2016

Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)

\(A=1-\frac{1}{32}=\frac{31}{32}\)

31/32 nhé bạn

3 tháng 8 2016

=\(\frac{31}{32}\)

3 tháng 8 2016

Đặt biểu thức trên là A

Ta có:

 \(2A-A=A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)=1-\frac{1}{32}=\frac{31}{32}\)

5 tháng 6 2018

Theo đề bài ta có :

\(2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)

\(\Leftrightarrow B=1-\frac{1}{256}\)

\(\Leftrightarrow B=\frac{255}{256}\)

5 tháng 6 2018

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..+\frac{1}{256}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^8}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^7}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)

\(\Rightarrow B=1-\frac{1}{2^8}\)