K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

ĐKXĐ: \(-\dfrac{4}{3}\le x\le5\)

\(\left(\sqrt{3x+4}-4\right)+\left(1-\sqrt{5-x}\right)+\left(3x^2-8x-16\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-4\right)}{\sqrt{3x+4}+4}+\dfrac{x-4}{1+\sqrt{5-x}}+\left(x-4\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(\dfrac{3}{\sqrt{3x+4}+4}+\dfrac{1}{1+\sqrt{5-x}}+3x+4\right)=0\)

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

30 tháng 7 2021

\(\sqrt{3x+4}-\sqrt{5-x}+3x^2-8x-19=0\) (\(5\ge x\ge\dfrac{-4}{3}\))

Vì 2 vế không âm, theo BĐT Cô-si ta được:

\(\dfrac{3x+4+1}{2}\ge\sqrt{3x+4}\)

\(\dfrac{5-x+1}{2}\ge\sqrt{5-x}\) \(\Rightarrow\) \(\dfrac{x-6}{2}\le-\sqrt{5-x}\)

Dấu "=" xảy ra khi và chỉ khi \(\left[{}\begin{matrix}3x+4=1\\5-x=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=-1\left(KTM\right)\\x=4\left(TM\right)\end{matrix}\right.\)

Thay vào pt trên thấy pt luôn đúng nên x = 4 TMĐK

Vậy ...

Chúc bn học tốt! (Có gì sai mong bạn bỏ qua)

18 tháng 9 2016

ko bít

18 tháng 9 2016

bạn học lớp nhiu

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

1:

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)

=>x-3=0 hoặc \(\sqrt{x+3}=2\)

=>x=3 hoặc x+3=4

=>x=1(loại) hoặc x=3(nhận)

2:

\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)

=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)

=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)

=>4(12x^2-16x+3x-4)=(7x-6)^2

=>49x^2-84x+36=48x^2-52x-16

=>-84x+36=-52x-16

=>-32x=-52

=>x=13/8

3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)

=>|x-5|=5-x

=>x-5<=0

=>x<=5

4: \(\Leftrightarrow\left|x-4\right|=x+2\)

=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)

=>x>=-2 và -8x+16=4x+4

=>x=1

23 tháng 8 2023

a) \(\sqrt{8x^3}\cdot2x\)

\(=\sqrt{8x^3\cdot2x}\)

\(=\sqrt{16x^4}\)

\(=\sqrt{\left(4x^2\right)^2}\)

\(=4x^2\)

b) \(\sqrt{12x^5}\cdot\sqrt{3x}\)

\(=\sqrt{12x^5\cdot3x}\)

\(=\sqrt{36x^6}\)

\(=\sqrt{\left(6x^3\right)^2}\)

\(=\left|6x^3\right|\)

\(=6x^3\)

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....