K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

\(-x^2+3x+1=-\left(x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{13}{4}\right)=-\left(x+\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\)

Dấu ''='' xảy ra khi x = -3/2 

Vậy GTLN biểu thức trên là 13/4 khi x = -3/2 

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

8 tháng 3 2016

ai k mk người đó giỏi nhất thế giới!

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

20 tháng 7 2020

A = (x2 - 3x + 1)(24 + 3x - x2)

A = -(x2 - 3x + 1)(x2 - 3x -24)

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1)]

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1) + 156,25 - 156,25]

A = -(x2 - 3x + 1 - 12,5)2 + 156,25 

A = -(x2 - 3x - 11,5)2 + 156,25 \(\le\)156,25 \(\forall\)x

Dấu "=" xảy ra <=> x2 - 3x - 11,5 = 0

<=> (x2 - 3x + 2,25) = 3,75

<=> (x - 1,5)2 = 3,75

<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Vậy MaxA = 156,25 khi \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

20 tháng 7 2020

thanks

1 tháng 1 2016

1/ 0, 71

2/ Tương tự 2 câu 1, 3 nhé!

3/ 11,25

Tick đúng nha! Thanks!

25 tháng 5 2021

\(P=\frac{x^2+3x+1}{x^2+1}\)

\(P=1+\frac{3x}{x^2+1}\)

\(P=1+\frac{3}{x+\frac{1}{x}}\)

Áp dụng bđt cô - si:

\(a+b>=2\sqrt{ab}\)

<=>\(x+\frac{1}{x}>=2\sqrt{x+\frac{1}{x}}\)

\(x+\frac{1}{x}>=2\)

vậy để P lớn nhất thì \(x+\frac{1}{x}\)=2

<=> giá trị lớn nhất của P là \(\frac{5}{2}\)

còn giá trị nhỏ nhất mình chưa nghĩ ra