Rút gọn biểu thức \(D=\frac{x^6-y^6}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)
\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)
\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)
\(Q=\left(x-y-2x-4y\right)^2\)
\(Q=\left(-x-5y\right)^2\)
b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)
\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)
\(A=\left[\left(xy+2\right)-2\right]^3\)
\(A=\left(xy+2-2\right)^3\)
\(A=\left(xy\right)^3\)
\(A=x^3y^3\)
c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)
\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)
\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)
\(=0\)
a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2
=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2
b: =(xy+2-2)^3=(xy)^3=x^3y^3
c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)
=24x+2x^3-2x^3-24x
=0
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)
\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)
\(P=\frac{1}{2y-x}\)
Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)
Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)
\(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(C=\frac{x+1}{2x^2+y+2}\)
Ta có:
A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)
B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
=>\(P=\left(A:B\right):C\)
\(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)
\(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)
\(=\frac{1}{2y-x}\)
=>\(P=\frac{1}{2y-x}\)
Thế x=-1,76 và y=3/25 vào P
=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)
\(D=\frac{x^6-y^6}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{\left(x^2\right)^3-\left(y^2\right)^3}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{\left(x^2-y^2\right)\left[\left(x^2\right)^2+x^2y^2+\left(y^2\right)^2\right]}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)}{\left(x-y\right)\left(x^4+x^2y^2+y^4\right)}=\frac{x^2-y^2}{x-y}\)
Gọn thế này được chưa???