Chứng minh không có giá trị nào của biến x để biểu thức Q giá trị dương: Q= -9x+24x-18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(P\left(x\right)=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1>1\forall x\in R\)\(Q\left(x\right)=\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=x^2-8x+16+3=\left(x-4\right)^2+3>0\forall x\in R\)b.
\(A\left(x\right)=4x-5-x^2=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1< 0\forall x\in R\)\(B\left(x\right)=24x-18-9x^2=-\left(9x^2-24x+18\right)=\left(-9x^2-24x+16+2\right)=-\left(3x+4\right)^2-2< 0\forall x\in R\)
a, P(x) =x^2-6x+10=x^2-6x+9+1=(x+3)^2+1>0
Q(x) =(x-3)(x-5)+4=x^2-8x+15+4=x^2-8x+19=x^2-8x+16+3=(x-4)^2+3>0
Kết luận:với bất kì giá trị nào của biến x thì 2 đa thức trên dương
b, A(x) =4x-5-x^2=-x^2+4x-5=-x^2+4x-4-1=-(x-2)^2-1<0
B(x) =24x-18-9x^2=-9x^2+24x-18= -(3x)^2+24x-16-2=-(3x-4)^2-2<0
Kết luận : ko có giá trị nào của biến x mà 2 đa thức trên dương
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
a)
2x2+2x+1
=(x+1)2+x2
(x+1)2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=-1. mà với x=-1 thì x2=1 => biểu thức trên =1
x2 luôn lớn hơn hoặc =0
dấu "=" xảy ra khi x=0=> (x+1)2=1 => biểu thức trên =1
vậy biểu thức này có giá trị dương ( >0 ) với mọi giá trị của biến
b)9x2-6x+2
=(3x+1)2 +1
ta có: (3x+1)2 luôn lớ hơn hoặc =0
=> (3x+1)2+1 luôn lớn hơn hoặc =1
=> (3x+1)^2+1 luôn dương với mọi giá trị của biến
a) \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2\)
Vì: \(2\left(x+\frac{1}{2}\right)^2\ge0\) với mọi x
=> \(\frac{1}{2}+2\left(x+\frac{1}{2}\right)^2>0\)
Vậy biểu thức trên luôn luôn dương với mọi giá trị của biến
b) \(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì: \(\left(3x-1\right)^2\ge0\) với mọi giá trị của x
=> \(\left(3x-1\right)^2+1>0\)
vậy biểu thức trên luôn luôn dương với mọi giá trị của x
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
= ( x2 - 2 .x . 1/2 +1/4 ) 3/4
= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương V
học tốt
Ta có:
\(x^2-x+1\)
\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)
hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến
Đề sai bn ak
-9x+24x-18=15x-18
thay x=2 thì Q dương nhé
d