Cho: P = 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ... + 1/97.98.99.100
Tính P.3.98.99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ... + 1/97.98.99.100
P = 1/1-1/2-1/3-1/4+1/2-1/3-1/4-1/5 +....+1/97-1/98-1/99-1/100
P = 1/1-1/100
P = 99/100
Tính giá trị biểu thức P.3.98.99
Cái đó thì bạn tự tính cũng dc dễ mak
P=1/1.2.3.4 +1/2.3.4.5 +1/3.4.5.6 +...+1/97.98.99.100
3P=3/1.2.3.4 +3/2.3.4.5 +3/3.4.5.6 +...+3/97.98.99.100
3P=1/1.2.3-1/2.3.4+1/2.3.4-1/3.4.5+................+1/97.98.99-1/98.99.100
3P = 1/1.2.3 - 1/98.99.100
3P =( 98.99.100-1.2.3)/1.2.3.98.99.100
P=( 98.99.100-1.2.3)/1.2.3.98.99.100.3
P=(98.33.50-1)/98.99.100.3
P= 161699/2910600
\(A=\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+\dfrac{1}{3\cdot4\cdot5\cdot6}+....+\dfrac{1}{9\cdot10\cdot11\cdot12}\)
\(3A=\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+\dfrac{3}{3\cdot4\cdot5\cdot6}+...+\dfrac{3}{9\cdot10\cdot11\cdot12}\)
\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{9\cdot10\cdot11}-\dfrac{1}{10\cdot11\cdot12}\)\(3A=\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{10\cdot11\cdot12}\)
\(A=\dfrac{1}{2}-\dfrac{1}{440}\)
\(A=\dfrac{219}{440}\)
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
=> \(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{27.28.29.30}\)
=> \(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
=> \(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}=\frac{14.29.10-1}{28.29.30}=\frac{4059}{28.29.30}\)
=> \(A=\frac{4059}{28.29.30}:3=\frac{1353}{28.29.30}=\frac{451}{28.29.10}\)
=> \(A=\frac{451}{8120}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100} \)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
=\(\frac{1}{3}\cdot\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)\)
=\(\frac{1}{18}-\frac{1}{5821200}\)
Nhận xét: 1/1.2.3 - 1/2.3.4 = 3/1.2.3.4, 1/2.3.4 - 1/3.4.5 =3/2.3.4.5,...,1/27.28.29 - 1/28.29.30
Gọi biểu thức phải tính bằng A,ta tính được:
3A=1/2.3 - 1/28.29.30 = 4059/28.29.30
vậy A = 1353/8120
Giups mk với...
chờ tối nha chớ giờ giải là khỏi đi học lun