chứng minh rằng nếu đường thẳng c cắt 2 đường thẳng a;b và trong các góc tạo thành có 1 cặp cặp góc so le trong bằng nhau thì 2 góc trong cùng phía bù nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ!
a) Giả sử m không cắt \(AB,AC\). Thật vậy
=> \(m\) // \(AB\) và \(m\) // \(BC.\)
=> \(AB\) // \(AC\) // \(BC\) (vô lí với gt \(\Delta ABC\))
=> \(m\) sẽ cắt các đường thẳng \(AB,AC.\)
Vậy ta có đpcm.
b) Gỉa sử m không cắt \(AC.\) Thậy vậy
=> \(m\) // \(AC\)
=> \(AC\) // \(BC\) (vô lí với gt \(\Delta ABC\))
=> \(m\) sẽ cắt cạnh \(AC.\)
Vậy ta có đpcm.
Chúc bạn học tốt!
A I M N P R N
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)
a b c A B 1 2 2 1 3 3 C D
Vì a//b \(\Rightarrow\widehat{A_3}=\widehat{B_3}\left(slt\right)\) (1)
Vì AC là phân giác của \(\widehat{A_3}\Rightarrow\widehat{A_2}=\widehat{\dfrac{A_3}{2}}\left(2\right)\)
Vì BD là phân giác của \(\widehat{B_3}\Rightarrow\widehat{B_2}=\widehat{\dfrac{B_3}{2}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\widehat{A_2}=\widehat{B_2}\) \(\)
Mà \(\widehat{A_2}\) và \(\widehat{B_2}\) là hai góc ở vị trí so le trong
\(\Rightarrow AC//BD\)
Vậy...
để thời áp dụng vào tính chất 1 đg thẳng cắt 2 đường thẳng
giả sử c ko cắt b.
suy ra c//b. Theo tiên đề Ơ-cơ-lit, qua 1 điểm cho trước ( điểm H đóa) ta chỉ vẽ được 1 và chỉ 1 đường thẳng // với 1 đường thẳng đã cho. Ở đây vẽ dc c//a và c//b => mâu thuẫn
Vậy c cắt b b tick **** chi mik nhs
Giải
a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 1800 (2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800 = 900
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.
a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 180
0
(2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212180
0 = 90
0
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo
bởi hai đường thẳng cắt nhau đó.
bạn hãy ấn vào nút Đúng 0 thì sẽ có 1 bất ngờ xảy ra
Ngo Tra Giang bị lừa rồi, bn ý nói thế là để đc thêm điểm để nhận áo hoặc nhận vip đó, mk nhắc nhở thì ko chịu nghe