K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

a, Ta có ( x - 3 ) ( x + 2 ) > 0 nên => x - 3 và x + 2 là 2 số nguyên cùng dấu .

Do đó : hoặc : x - 3 > 0 và x + 2 > 0

=> x > 3 và x > -2 => x > 3

Hoặc : x - 3 < 0 và x + 2 < 0

=> x < 3 và x < -2 => x < -2

Vậy với x < -2 hoặc x > 3 sẽ thỏa ( x - 3 ) ( x + 2 ) > 0

b, Ta có : ( 2x - 4 ) ( x + 4 ) < 0 nên suy ra 2x - 1 và x + 4 là 2 số nguyên khác dấu .

Do đó : hoặc 2x - 4 < 0 và x + 4 > 0 => x < 3 và x <  -4

Hoặc : 2x - 4 > 0 và x + 4 < 0 => x > 2 và x < -4

Trường hợp này không xảy ra . Vậy với -4 < x < 2 hay x là một trong 5 số -3 , -2 , -1 , 0 , 1 sẽ thỏa ( 2x - 4 ) ( x + 4 ) < 0 

 

 

2 tháng 6 2016

nhầm nhé Sorry leu

Ta có : ( x - 3 ) ( x + 2 ) > 0 nên suy ra x - 3 và x + 2 là 2 số nguyên cùng dấu .

Do đó : hoặc : x - 3 > 0 và x + 2 > 0

=> x > 3 và x > -2 => x >3

Hoặc : x - 3 < 0 và x + 2 < 0

=> x < 3 và x < -2 => x < -2

Vậy với x < -2 hoặc x > 3 sẽ thỏa ( x - 3 ) ( x + 2 ) >0

Ta có ( 2x - 4 ) ( x + 4 ) < 0 nên suy ra 2x - 1 và x + 4 là 2 số nguyên khác dấu

Do đó : hoặc 2x - 4 < 0 và x + 4 > 0 => x< 3 và x > -4

Hoặc : 2x - 4 > 0 và x + 4 < 0 => x > 2 và x < -4

Trường hợp này không xảy ra . Vậy với -4 < x < 2 hay x là 1 trong 5 số : -3 , -2, -1 , 0 , 1 sẽ thỏa ( 2x - 4 ) ( x + 4 ) <0

 

 

 

30 tháng 1 2016

Tìm số nguyên n để n - 4 chia hết cho n - 1

Ta có : n - 4 chia hết cho n - 1

=> n - 1 - 3 chia hết cho n - 1

=> 3 chia hết cho n - 1

=> n - 1 \(\in\)Ư(3) = {+1;+3}

Với n - 1 = 1 => n = 2

Với n - 1 = -1 => n = 0

Với n - 1 = 3 => n = 4

Với n - 1 = -3 => -2

Vậy n \(\in\) {2;0;4;-2}

30 tháng 1 2016

kho qua minh khong bit

22 tháng 5 2018

12 tháng 1 2016

Bn nào giải giúp mk đi, mk đag cần gấp

26 tháng 8 2021

a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)

Vì \(x+3>x-2\)

nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)

c, \(\left(5-2x\right)\left(x+4\right)>0\)

TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)

TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )

bạn làm tương tự nhé