Cho hình thang ABCD có góc A = góc D = 90 độ,F là trung điểm của BC .chứng minh góc BAF = góc CDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AF và DC là I.
\(\widehat{A}=\widehat{D}=90^0\Rightarrow AB//CD\Rightarrow\hept{\begin{cases}\widehat{ABF}=\widehat{ICF}\\\widehat{BAF}=\widehat{I}\left(1\right)\end{cases}\left(SLT\right)}\)
\(\Delta ABF=\Delta ICF\left(g.c.g\right)\Rightarrow AF=IF\)mà \(F\in AI\Rightarrow\) F là trung điểm của AI
Tam giác ADI vuông tại D có DF là đường trung tuyến ứng với cạnh huyền AI
\(\Rightarrow DF=\frac{1}{2}AI\Rightarrow DF=IF\Rightarrow\Delta IDF\)cân tại F \(\Rightarrow\widehat{FDC}=\widehat{I}\left(2\right)\) (t/c)
Từ (1) và (2), \(\widehat{BAF}=\widehat{CDF}\)
Chúc bạn học tốt.
A B C D . E F Giải E là trung điểm AC F là trung điểm BD => EF // CD // AB => góc AEF vuông góc CEF vuông Xét tam giác AEF và CEF có : /\ AEF = /\ CEF = 90 độ EF chung AE = AC (gt) => tam giác AEF = CEF ( cạnh góc cạnh ) => FA = FC => tam giác AFC cân tại F ( đpcm )
Giải
Vì E là trung điểm AC
F là trung điểm BD
=> EF // CD // AB
=>góc AEF \(\perp\) CEF vuông
Xét \(\Delta\) AEF và CEF có
:/\ AEF = /\ CEF = 90 độ
EF chung
AE = AC (gt)
=> \(\Delta\) AEF = CEF ( cạnh góc cạnh )
=>\(\Delta\) AFD là tam giác cân
b, Vì \(\Delta\)AFD là \(\Delta\)cân nên
\(\Rightarrow\)Góc FAD = góc FDA
Ta có : góc A = góc BAF + góc FAD
Góc D = góc CDF + góc FDA
mà góc A = góc D = 90 độ
=> góc BAF = góc CDF