Tìm một số có hai chữ số có dạng absao cho (ba.10):ab=12 (tất cả các số ab;ba đều có gạch trên đầu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\overline{ba}.10=\overline{ab}.45$
$(10b+a).10=(10a+b).45$
$100b+10a = 450a+45b$
$55b = 440a$
$5b=40a$
$\Rightarrow 40a=5b< 5.10<80$
$\Rightarrow a< 2$
Mà $a$ là số tự nhiên khác 0 nên $a=1$.
$5b=40.a=40\Rightarrow b=8$.
Vậy số cần tìm là $18$
ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6
nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)
suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0
tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li
tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625
Coi mỗi cặp chữ số giống như 1 chữ số ta lập được : 1 x 2 x 3 = 6 ( số )
Đó là : 2379ab, ab2379, 23ab79, 79ab23, ab7923, 7923ab.
- Như vậy : Mỗi cặp chữ số : ở hàng đơn vị xuất hiện 2 lần, ở hàng trăm 2 lần, hàng nghìn cũng 2 lần.
Vậy tổng của 6 số hạng trên là :
ababab x 2 + 232323 x 2 + 797979 x 2 = 2 989 869
= ababab x 2 + 464646 + 1595958 = 2 989 869
= ababab x 2 + ( 464646 + 1595958 ) = 2 989 869
= ababab x 2 + 2060604 = 2 989 869
= ababab x 2 = 929 292
= ababab = 929 292 : 2
= ababab = 464646
Vậy AB = 46