CMR : 2 số tự nhien liên tiếp là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số tự nhiên liên tiếp là : n ; n + 1 ( n thuộc N )
Đặt d là ƯCLN ( n ; n + 1 )
=> n ⋮ d ( 1 )
=> n + 1 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( n + 1 ) - n ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( n ; n + 1 ) = 1 nên n và n + 1 là NTCN ( đpcm )
Gọi hai số đó là:n,n+1
Gọi UCLN(n,n+1)=d
Ta có:n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 2 số tự nhiên liên tiếp nguyên tố cùng nhau
a) Gọi 2 số tự nhiên là a,a+1 và (a;a+1)=d
Ta có: a chia hết cho d
a+1 chia hết cho d
=> (a+1)-a =1 chia hết cho d
=> d thuộc Ư(1)={1}
Vậy d=1
=> 2 số tự nhiên là 2 số nguyên tố cùng nhau
b) Gọi 2 số lẻ liên tiếp là a ;a+2 và (a;a+2)=d
Ta có: a chia hết cho d
a+2 chia hết cho d
=> (a+2)-a=2 chia hết cho d
=> d thuộc Ư(2)={1;2}
Và a và a+2 ;à 2 số lẻ liên tiếp nên d ko =2 => d=1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
Câu hỏi của Nguyễn Minh Bảo Anh - Toán lớp 6 | Học trực tuyến
Tham khảo nha !
gọi hai số đó là a và a+1
Ư{a;a+1} = d
a : d
a+1:d
=> (a+1)-a=1 :d
=> d = 1 (ĐPCM)
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Gọi số lẻ thứ nhất là 2n + 1 => số lẻ thứ 2 là 2n + 3 ( với mọi n lớn hơn hoặc bằng d )
Gọi d là ƯC 2n+ 1 và 2n + 3
Hay d thuộc ƯC ( 2n+1 ; 2n+3 )
=> [ 2n + 1 - ( 2n + 3 )] chia hết cho d
=> [ 2n + 1 - 2n - 3 ] chia hết cho d
=> -2 chia hết cho d => d là Ư của 2 => d = { 1 ; 2 }
Vì 2n + 1 là số lẻ => 3n + 1 ko chia hết cho 2
2n + 3 là số lẻ => 2n + 3 ko chia hết cho 2
tổng hợp hai điều trên => d = 1
ƯC ( 2n+1;2n+3 ) = 1
=> 2n + 1 và 2n+ 3 nguyên tố cùng nhau
Vậy ...........................
a, Gọi d là ƯCLN(2n+1,3n+1)
Có: 2n+1chia hết cho 2n+1
Suy ra: 3.(2n+1)chia hết cho 2n+1 hay 6n+3 chia hết cho 2n+1
Lại có 3n+1 chia hết 3n+1
Nên 2.(3n+1) chia hết cho 3n+1 hay 6n+2 chia hết cho 3n+1
Do đó (6n+3)-(6n+2) chia hết cho d
Hay 1 chia hết cho d
Suy ra d=1
Mà 2 số nguyên tố cùng nhau có ƯCLN là 1
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
P/s: nếu đúng thì hãy cho **** nha! ^-^
GỌI 2 SỐ TỰ NHIÊN LIÊN TIẾP LỚN HƠN 0 LÀ A VÀ A+1 ,B LÀ ƯỚC CỦA A
A CHIA HẾT CHO B->A+1 CHIA B DƯ 1
->B=1 ĐỂ A VÀ A+1 CHIA HẾT CHO B LÀ ƯCLN(A,A+1)->ĐIỀU PHẢI CHỨNG MINH
Gọi 2 số tự nhiên liên tiếp khác 0 là n và n + 1 (n khác 0)
Gọi d = ƯCLN(n; n + 1) (d thuộc N*)
=> n chia hết cho d; n + 1 chia hết cho d
=> (n + 1) - n chia hết cho d
=> n + 1 - n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n; n + 1) = 1
=> n và n + 1 nguyên tố cùng nhau
=> đpcm
Chú ý: 2 số nguyên tố cùng ngau là 2 số có ƯCLN = 1
Gọi hai số đó là:n,n+1
Gọi UCLN﴾n,n+1﴿ là d
Ta có:n chia hết cho d
n+1 chia hết cho d
=>(n+1)‐n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 2 số tự nhiên liên tiếp nguyên tố cùng nhau
Gọi số thứ nhất là n, số thứ hai là n+1
Gọi d là ƯC của n và n + 1
Ta có: n chia hết cho d(1)
n+1 chia hết cho d(2)
Từ (1) và (2) ta được:
n+1-n chia hết cho d
=> 1 chia hết cho d
=> d ϵ Ư (1 )
=> ƯC(n,n+1)=1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau