cho tam giác ABC có trung tuyến AM sao cho AM = 1/2 BC . cm rằng tam giác ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BM=CM ( AM là đg trung tuyến )
Xét tam giác ABC có
Góc A=90’
=>AM=1/2 BC ( t/c đg trung tuyến trong một tam giác vuông)
ta có mc=mb(gt)
có tam giác abc(góc a =90)
=)am = 1/2bc(tính chất đường trung tuyến trong tam giác vuông).
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
\(AM=\frac{1}{2}BC=BM=CM\)
suy ra \(\Delta AMB,\Delta AMC\)đều cân tại \(M\).
suy ra \(\widehat{MAB}=\widehat{MBA},\widehat{MCA}=\widehat{MAC}\)
\(\Rightarrow\widehat{ABC}=\widehat{MAB}+\widehat{MAC}=\widehat{MBA}+\widehat{MCA}=\widehat{CBA}+\widehat{BCA}\)
\(\Rightarrow\widehat{ABC}=\frac{180^o}{2}=90^o\)
Ta có đpcm.