tìm tât cả các số nguyên dương a,b sao cho \(\frac{a^2-2}{ab+2}\)là số nguyên
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NH
1
5 tháng 4 2020
Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath
DD
1
LV
0
VN
0
PV
1
5 tháng 4 2020
Trả lời:
Xét trường hợp n⋮(n−1)n⋮(n−1), dễ tìm được n=2, thỏa mãn.
- Với n không chia hết cho n-1, ta có:
Nếu n là số nguyên tố, dễ thấy (n−2)!(n−2)! không chia hết cho nn , thỏa mãn.
Nếu n là hợp số, (n−2)!(n−2)! chia hết cho n2n2 khi n có ít nhất 4 ước trong đoạn [2,n−2][2,n−2] (suy ra trực tiếp từ chính chất nếu d là ước của n thì {\frac{n}{d}} cũng là ước của n), khi đó, n sẽ có ít nhất 6 ước (thêm 1 và n).
Do đó, trong trường hợp này, (n−2)!(n−2)! không chia hết cho n2n2 khi n có ít hơn 6 ước.
Kết hợp lại, ta được đáp án : n là các số có ít hơn 6 ước.
DH
0
VN
4
Ta có \(b\left(a^2-2\right)=a\left(ab+2\right)-2\left(a+b\right)\). Do \(a^2-2\vdots ab+2\) nên \(2\left(a+b\right)\vdots ab+2\to ab+2\le2a+2b\to\left(a-2\right)\left(b-2\right)\le2\).
Với \(a=1\to-\frac{1}{b+2}\in Z\), loại
Với \(a=2\to\frac{4}{2b+2}\in Z\to2b+2=4\to b=1\)
Với \(a=3\to\frac{7}{3b+2}\in Z\to3b+2=7\to\) loại
Với \(a=4\to\frac{14}{4b+2}\in Z\to4b+2=14\to b=3.\)
Với \(a\ge5\to b-2\le\frac{2}{a-2}
đua ha đô kho qua chung