Vẽ tam giác QPN có QP = 4cm. Gọi E là trung điểm của QN, K là trung điểm của NP. Vẽ
điểm M thuộc tia đối của tia QN sao cho QM = QE. Gọi I là giao điểm của PQ và MK.
a) Tìm độ dài đoạn thẳng EK ?
b) Chứng minh I là trung điểm của MK
c) Nếu QI = 1cm thì độ dài đoạn thẳng EK tìm được ở câu a còn đúng nữa không?
Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(MN=\sqrt{NP^2-MP^2}=8\left(cm\right)\)
nên NQ=4(cm)
b: Xét ΔQMP và ΔQND có
QM=QN
\(\widehat{MQP}=\widehat{NQD}\)
QP=QD
Do đó; ΔQMP=ΔQND
Suy ra: MP=ND
a) Xét △MIQ và △NIP ta có:
IM=IN (gt)
∠MIQ=∠NIP(2 góc đối đỉnh)
MQ=MP (gt)
Vậy : △MIQ = △NIP (c.g.c)
Vậy: QM = NP (2 cạnh tương ứng)
⇒ ∠MQI = ∠IPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy : QM // NP
b) Xét △MEK và △PEN ta có:
EM = EP (gt)
∠MEK =∠PEN (2 góc đối đỉnh)
EK = EN (gt)
⇒ △MEK = △PEN (c.g.c)
⇒ ∠EMK = ∠EPN (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
Vậy: MK//PN
c) Từ câu a và câu b, ta có : QM//NP và MK//PN
Vậy M,Q,K thẳng hàng.(1)
Ta có:△MEK=△PEN (theo câu b)
⇒ MK=NP (2 cạnh tương ứng)
⇒ QM=NP (theo câu a) và MK=NP(chứng minh trên)⇒QM=MK (2)
Từ (1) và (2), suy ra: M là trung điểm của đoạn thẳng QK.
Mình ko biết là A trog câu c) ở đâu nên mình đổi thành Q nha!
a: Vì OE và OF là hai tia đối nhau
nên EF=OE+OF=11(cm)
b: K là trung điểm của EF
nên EK=EF/2=5,5(cm)
=>OK=EO-EK=0,5(cm)
a: BF=2BE
nên EF=2ED
=>D là trung điểm của EF
Xet ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: GE/GK=2
GC/DC=1/3