chứng minh rằng 10 ^2014 +8 chia hết cho 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy 102014 (10.10.10.10...10.10) có 2014 thừa số 10 mà trong đó có 10.10.10 chia hết cho 8 nên cả tích chia hết cho 8 hay 102014 chia hết cho 8.
\(\Rightarrow\)102014 + 8 chia hết cho 8.
Ta thấy 10n chia cho 9 thì luôn dư 1 mà 10n + 8 sẽ chia hết cho 9
\(\Rightarrow\)102014 + 8 chia hết cho 9.
Mà UCLN (8;9) = 1
\(\Rightarrow\)102014 + 8 chia hết cho 8 và 9
\(\Rightarrow\)102014 + 8 chia hết cho 72.
Ta có : 72 = 8.9
\(10^{2014}+8=100...0\left(2014cs0\right)+8=100...08\left(2013cs0\right)\)\
Số trên có 3 chữ số tậm cùng là 008 \(⋮\)8
\(\Rightarrow\)\(100...08\left(2013cs0\right)\)\(⋮\)\(8\)
Ta có tổng các chữ số của số trên là :
\(1+0+0+...+0+8=9\)\(⋮\)\(9\)
Mà \(\left(8,9\right)=1\)
\(\Rightarrow\)\(10^{2014}+8\)\(⋮\)\(8.9=72\)
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8=>10^28+8 chia hết cho 8
Ta có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9=> 10^28 +8 chia hết cho 9
suy ra:
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8;9)=1
Vì 10^28 chia hết cho 8.9
Nên 10 ^28 chia hết cho 72
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8
=> 10^28 + 8 chia hết cho 8 (1)
Lại có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9
=> 10^28 +8 chia hết cho 9 (2)
Từ (1) và (2) suy ra :
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8; 9)=1
=> 10^28 chia hết cho 8.9
=> 10 ^28 chia hết cho 72
tik mình nha
Ta có : 10^28 + 8
=10^3 . 10^25 + 8
= 1000.10^25+8 chia hết cho 8=>10^28+8 chia hết cho 8
Ta có : 10^28 +8
=1+0+0+ ...+ 0 +8 ( 28 chữ số 0 )
=100...008 (27 chữ số 0)
Ta thấy : Tổng các chữ số của 100...008 là :
1+0+0 +...+0+8=9 chia hết cho 9=> 10^28 +8 chia hết cho 9
suy ra:
10^28 +8 chia hết cho 8
Và 10^28 +8 chia hết cho 9
Mà (8;9)=1
Vì 10^28 chia hết cho 8.9
Nên 10 ^28 chia hết cho 72
Ta có : +) 104 = 1000 chia hết cho 8 => 104.102013 chia hết cho 8 => 102017 chia hết cho 8
+) 8 chia hết cho 8
=> 10^2017 + 8 chia hết cho 8 (1)
Ta lại có : 10^2017 = 100...0 (có 2017 số 0 ) => 10000...0 + 8 = 1000...08 chia hết cho 9 => 10^2017 + 8 chia hết cho 9 (2)
Từ (1) (2) => 10^2017 + 8 chia hết cho 72
Để một số chia hết cho 72 thì số đó phải chia hết cho 9 và 8
Ta thấy 1028 chia hết cho 8
mà 1028 = 100..000 ( 28 số 0) => có tổng bằng 1
Lại có 1 + 8 = 9, 9 chia hết cho 9
từ đó rút ra điều phải chứng minh
1028 = (104)7 = (24 . 54)7 = (16 . 625)7 = 27 . 87 . 6257 \(⋮\) 8 (1)
1028 = 1000...000 có tổng 1 + 28.0 = 1
=> 1028 + 8 có tổng 1 + 8 = 9 => 1028 \(⋮\)9 (2)
Từ (1) và (2) => 1028 + 8 \(⋮\)72
\(10^{28}+8=10...000+8\) (28 chữ số 0) \(=10...008\) (27 chữ số 0)
Xét số 10...008 có tổng các chữ số là 1 + 0 + 0 + ... + 0 + 8 = 9 nên số đó chia hết cho 9 ; có 3 chữ số tận cùng là 008 chia hết cho 8 nên số đó chia hết cho 8. Vậy số đó chia hết cho tích (8 . 9) = 72.
=> ĐPCM
Ta có : 10^2014+8
=100000....000(2014 chữ số 0)+8
= 100000.....008(2013 chữ số 0)
Xét 008 chia hết cho 8=> 10^2014+8 chia hết cho 8 (1)
1+2013.0+8=9 (chia hết cho 9)=> 10^2014+8 chia hết cho 9 (2)
Mà ƯCLN(8;9)=1 (3)
Từ (1) (2) (3) => 10^2014+8 chia hết cho 8.9
=> 10^2014+8 chia hết cho72