- Cho a + 2015 : a - 2015 = b + 2016 : b - 2016 Chứng minh rằng: a : 2015 = b :2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+2015}{a-2015}=\frac{b+2016}{b-2016}\Rightarrow\)\(\frac{a+2015}{a-2015}-1=\frac{b+2016}{b-2016}-1\)
\(\frac{a+2015-a+2015}{a-2015}=\frac{b+2016-b+2016}{b-2016}\Rightarrow\)\(\frac{2015}{a-2015}=\frac{2016}{b-2016}\Rightarrow\)
2015(b-2016) =2016(a-2015) =>2015b =2016a =>\(\frac{a}{b}=\frac{2015}{2016}\)
Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1
Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn
suy ra 2015^2016-1 chia hết cho 2
2015^2016 +1 chia hết cho 2
Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2
Hay A chia hết cho 4
2 Xét 2 STN liên tiếp
(2015^2016-1),2015^2016,(2015^2106+1)
Trong ba số tự nhiên sẽ có một số chia hết cho 3
Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3
Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3
mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3
MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen
Cho a,b,c là số dương . Chứng minh:s^2016+b^2016+c^2016>(b+c×a^2015)/2+(c+a×b^2015)/2+(a+b×a^2015)/2
Vì \(a,b,c\) lần lượt là độ dài ba cạnh của 1 tam giác cho trước nên suy ra \(a,b,c>0\)
\(----------------\)
Áp dụng bất đẳng thức \(AM-GM\) cho hai số dương, ta có:
\(\frac{a^{2016}}{b+c-a}+\left(b+c-a\right)a^{2014}\ge2\sqrt{\frac{a^{2016}}{b+c-a}.\left(b+c-a\right)a^{2014}}=2a^{2015}\)
\(\Rightarrow\) \(\frac{a^{2016}}{b+c-a}+a^{2014}b+ca^{2014}\ge3a^{2015}\) \(\left(1\right)\)
Theo đó, ta cũng thiết lập tương tự hai bất đẳng thức mới bắt đầu với các hoán vị \(b\rightarrow c\rightarrow a,\) thu được:
\(\frac{b^{2016}}{c+a-b}+b^{2014}c+ab^{2014}\ge3b^{2015}\) \(\left(2\right)\)
\(\frac{c^{2016}}{a+b-c}+c^{2014}a+bc^{2014}\ge3c^{2015}\) \(\left(3\right)\)
Cộng ba bất đẳng thức \(\left(1\right);\left(2\right)\) và \(\left(3\right),\) đồng thời chuyển vế, khi đó bđt mới có dạng:
\(\frac{a^{2016}}{b+c-a}+\frac{b^{2016}}{c+a-b}+\frac{c^{2016}}{a+b-c}\ge3\left(a^{2015}+b^{2015}+c^{2015}\right)\)
\(-\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\) \(\left(\alpha\right)\)
\(----------------\)
Mặt khác, lại theo bđt \(AM-GM,\) ta có:
\(\Omega_1:\) \(2014a^{2015}+b^{2015}\ge2015\sqrt[2015]{\left(a^{2014}b\right)^{2015}}=2015a^{2014}b\)
\(\Omega_2:\) \(2014b^{2015}+a^{2015}\ge2015\sqrt[2015]{\left(b^{2014}a\right)^{2015}}=2015b^{2014}a\)
Cộng từng vế của hai bđt ở trên và rút gọn, khi đó:
\(a^{2015}+b^{2015}\ge a^{2014}b+b^{2014}a=ab\left(a^{2013}+b^{2013}\right)\) \(\left(1^'\right)\)
Tương tự ta thực hiện các dãy biến đổi như trên, nhận được:
\(b^{2015}+c^{2015}\ge bc\left(b^{2013}+c^{2013}\right)\) \(\left(2^'\right)\)
\(c^{2015}+a^{2015}\ge ca\left(c^{2013}+a^{2013}\right)\) \(\left(3^'\right)\)
Từ \(\left(1^'\right);\left(2^'\right)\) và \(\left(3^'\right)\) suy ra \(2\left(a^{2015}+b^{2015}+c^{2015}\right)\ge\left[ab\left(a^{2013}+b^{2013}\right)+bc\left(b^{2013}+c^{2013}\right)+ca\left(c^{2013}+a^{2013}\right)\right]\) \(\left(\beta\right)\)
\(----------------\)
\(\left(\alpha\right);\beta\) \(\Rightarrow\) \(đpcm\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c,\) tức là tam giác khi đó phải là một tam giác đều!
ta có: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 4 nên A chia hết cho 4
mặt khác: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 12 nên A chia hết cho 12
ta có \(\frac{a+2015}{a-2015}=\frac{b+2016}{b-2016}\)
\(\Rightarrow\frac{\left(a+2015\right)-\left(a-2015\right)}{a-2015}=\frac{\left(b+2016\right)-\left(b-2016\right)}{b-2016}\)
\(\Rightarrow\frac{2015.2}{a-2015}=\frac{2016.2}{b-2016}\)
\(\Rightarrow\frac{2015}{a-2015}=\frac{2016}{b-2016}\)
\(\Rightarrow\frac{a-2015}{2015}=\frac{b-2016}{2016}\)
\(\Rightarrow\frac{a}{2015}-1=\frac{b}{2016}-1\)
Suy ra ĐPCM