Giải hệ phương trình :
\(\begin{cases}2^x-2=3y-3^x\\2^y-2=3x-3^y\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
pt đầu
<=> \(\left(x+1\right)^3-y^3+3\left(x+1\right)-3y=0\)
<=> \(\left(x+1-y\right)\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)=0\)
<=> \(x+1-y=0\)
vì \(\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)>0,\forall x;y\)
<=> y = x + 1
Thế vào phương trinhd dưới rồi giải
\(x^2+\left(x+1\right)^2-3x-1=0\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Với x = 0 ta suy ra y = 1
Với x = 1/2 suy ra y = 3/2
Kết luận:...
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(\begin{cases}2^x-2=3y-3^x\\2^y-2=3x-3^y\end{cases}\Leftrightarrow\begin{cases}2^x+3^x=3y+2\\2^y+3^y=3x+2\end{cases}\)
Từ đó suy ra để (x;y) là nghiệm của hệ thì \(x>-\frac{2}{3}\) và\(y>-\frac{2}{3}\)
Xét hàm số :
\(f\left(t\right)=2^t+3^t\) có \(f'\left(t\right)=2^t.\ln2+3^t.\ln3>0\) với mọi \(t\in\left(-\frac{2}{3};+\infty\right)\)
Vậy hàm số f đồng biến trên \(\left(-\frac{2}{3};+\infty\right)\)
* Nếu \(x>y\) thì \(3x+2>3y+2\Rightarrow f\left(y\right)>f\left(x\right)\Rightarrow y>x\) mâu thuẫn
* Nếu \(x< y\) thì \(3x+2< 3y+2\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y< x\) mâu thuẫn
Suy ra \(x=y\), ta có hệ tương đương :
\(\begin{cases}x=y\\2^x+3^x=3x+2\left(1\right)\end{cases}\)
Xét \(g\left(t\right)=2^t+3^t-3t-2\), ta có
\(g"\left(t\right)=2^t.\ln^22+3^t\ln^23>0\)
nên \(g'\left(t\right)=0\) có tối đa 1 nghiệm
Suy ra \(g\left(t\right)=0\) có tối đa 2 nghiệm
Như vậy phương trình (1) có 2 nghiệm : \(x=1;x=0\)
Vậy hệ phương trình đã cho : \(\left(x;y\right)=\left(0;0\right);\left(1;1\right)\)