K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

Đặt \(t=\sin^2x\Rightarrow\begin{cases}\cos^2x=1-t\\t\in\left[0;1\right]\end{cases}\) \(\Leftrightarrow f\left(x\right)=5^t+5^{1-t}=g\left(t\right);t\in\left[0;1\right]\)

Ta có : \(g'\left(t\right)=5^t\ln5-5^{1-t}\ln5=\left(5^t-5^{1-t}\right)\ln5=0\)

           \(\Leftrightarrow5^t=5^{1-t}\)

           \(\Leftrightarrow t=1-t\)

           \(t=\frac{1}{2}\)

Mà \(\lim\limits_{x\rightarrow-\infty}g\left(t\right)=\lim\limits_{x\rightarrow-\infty}\left(5^t-5^{1-t}\right)=+\infty\)

       \(\lim\limits_{x\rightarrow+\infty}g\left(t\right)=\lim\limits_{x\rightarrow+\infty}\left(5^t-5^{1-t}\right)=+\infty\)

Ta có bảng biến thiên

t g'(t) g(t) - 8 1 2 + 8 0 - + + 8 + 8 2 căn 5

\(\Rightarrow\) Min \(f\left(x\right)=2\sqrt{5}\) khi  \(t=\frac{1}{2}\Leftrightarrow\sin^2x=\frac{1}{2}\Leftrightarrow\frac{1-\cos2x}{2}=\frac{1}{2}\)

                                             \(\Leftrightarrow\cos2x=0\)                  

                                              \(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)   \(\left(k\in Z\right)\)