K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(\Rightarrow y'=\frac{2\left(\ln x\right)\frac{1}{x}}{3\sqrt[3]{\ln^4x}}=\frac{2}{3x\sqrt[3]{\ln x}}\)

NV
9 tháng 9 2021

1.

\(y'=\left(\dfrac{x}{lnx}\right)'.3^{\dfrac{x}{lnx}}.ln3=\dfrac{lnx-1}{ln^2x}.3^{\dfrac{x}{lnx}}.ln3\)

2.

\(y'=\left(tanx\right)'.tanx+\left(tanx\right)'.\dfrac{1}{tanx}=\dfrac{tanx}{cos^2x}+\dfrac{1}{tanx.cos^2x}\)

3.

\(y=\left(ln2x\right)^{\dfrac{2}{3}}\Rightarrow y'=\left(ln2x\right)'.\dfrac{2}{3}.\left(ln2x\right)^{-\dfrac{1}{3}}=\dfrac{1}{3x\sqrt[3]{ln2x}}\)

9 tháng 9 2021

Em cảm ơn anh nhiều ạ

NV
1 tháng 11 2021

a.

\(y'=\dfrac{\left(1+\sqrt{3x-1}\right)'}{1+\sqrt{3x-1}}=\dfrac{3}{2\left(1+\sqrt{3x-1}\right)\sqrt{3x-1}}\)

b.

\(y'=\dfrac{\left(2sin^2x-1\right)'}{\left(2sin^2x-1\right).ln10}=\dfrac{2sin2x}{\left(2sin^2x-1\right)ln10}\)

c.

\(y'=\left(3x^2+3\right)3^{x^3+3x+1}.e^x.ln3+3^{x^3+3x+1}.e^x\)

12 tháng 5 2016

\(y'=\frac{\frac{2}{2x-1}.\sqrt{2x-1}-\frac{1}{\sqrt{2x-1}}\ln\left(2x-1\right)}{2x-1}=\frac{2-\ln\left(2x-1\right)}{\left(2x-1\right)\sqrt{2x-1}}\)

a: \(y=x\cdot e^{2x}\)

=>\(y'=\left(x\cdot e^{2x}\right)'\)

\(=x\cdot\left(e^{2x}\right)'+x'\cdot\left(e^{2x}\right)\)

\(=e^{2x}+2\cdot x\cdot e^{2x}\)

\(y''=\left(e^{2x}+2\cdot x\cdot e^{2x}\right)'\)

\(=\left(e^{2x}\right)'+\left(2\cdot x\cdot e^{2x}\right)'\)

\(=4\cdot e^{2x}+4\cdot x\cdot e^{2x}\)

b: \(y=ln\left(2x+3\right)\)

=>\(y'=\dfrac{\left(2x+3\right)'}{\left(2x+3\right)}=\dfrac{2}{2x+3}\)

=>\(y''=\left(\dfrac{2}{2x+3}\right)'=\dfrac{2\left(2x+3\right)'-2'\left(2x+3\right)}{\left(2x+3\right)^2}\)

\(=\dfrac{4}{\left(2x+3\right)^2}\)

6 tháng 5 2016

Ta có \(y'=\frac{1}{3x\sqrt[3]{\ln}x}\)

a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)

\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)

\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)

\(=5x^4+8x^3-9x^2-12x\)

b: y=1/-2x+5 

=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)

c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)

d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)

\(=cos^2x-sin^2x=cos2x\)

e: \(y=x\cdot e^x\)

=>\(y'=e^x+x\cdot e^x\)

f: \(y=ln^2x\)

=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)

15 tháng 1 2018

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,y'=8x^3-9x^2+10x\\ \Rightarrow y''=24x^2-18x+10\\ b,y'=\dfrac{2}{\left(3-x\right)^2}\\ \Rightarrow y''=\dfrac{4}{\left(3-x\right)^3}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(c,y'=2cos2xcosx-sin2xsinx\\ \Rightarrow y''=-5sin\left(2x\right)cos\left(x\right)-4cos\left(2x\right)sin\left(x\right)\\ d,y'=-2e^{-2x+3}\\ \Rightarrow y''=4e^{-2x+3}\)

a: y=ln(x+1)

=>\(y'=\dfrac{1}{x+1}\)

=>\(y''=\dfrac{1'\left(x+1\right)-1\left(x+1\right)'}{\left(x+1\right)^2}=\dfrac{-1}{\left(x+1\right)^2}\)

b: y=tan 2x

=>\(y'=\dfrac{2}{cos^22x}\)

=>\(y''=\left(\dfrac{2}{cos^22x}\right)'=\dfrac{-2\cdot cos^22x'}{cos^42x}=\dfrac{-2\cdot2\cdot cos2x\left(cos2x\right)'}{cos^42x}\)

\(=\dfrac{4\cdot2\cdot sin2x}{cos^32x}=\dfrac{8\cdot sin2x}{cos^32x}\)