cho tam giác ABC , trung tuyến BM , điểm D thuộc cạnh AB sao cho BD = 1/2 DA cm: 3 điểm D,I,C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Xét hai tam giác AMC và tam giác DMB, ta có:
- MB = MC [M là trung điểm AB]
- \(\widehat{BMD}=\widehat{AMC}\left[gt\right]\)
- MA = MD [gt]
=> \(\Delta AMC=\Delta DMB\left[c-g-c\right]\)
=> AC = BD
b,
Vì \(\Delta AMC=\Delta DMB\left[cmt\right]\)
=> \(\widehat{ACM}=\widehat{DBM}\)
Mà hai góc này ở vị trí so le trong bằng nhau
=> AC//BD
c,
Ta có:
AC = BD [cmt]
Mà KD = AI [gt]
=> IC = BK
Xét hai tam giác BMK và tam giác CMI, ta có:
- MB = MC [gt]
- \(\widehat{ACM}=\widehat{DBM}\)[cmt]
- IC = BK [cmt]
=> tam giác BMK = tam giác CMI [c-g-c]
Lại có:
\(\Delta ACM\) = \(\Delta BMD\)
Mà \(\Delta BMK=\Delta CMI\left[cmt\right]\)
=> tam giác IMA = tam giác DMK
=> góc KMD = góc IMA
Mà góc AMD = góc AMK + góc KMD = 180o
góc KMI = góc AMK + góc IMA
Mà góc KMD = góc IMA [cmt]
=> KMI = 180o
Vậy ba điểm I,M,K thẳng hàng
AAI ĐI NGANG QUA ỦNG HỘ NHÉ
Tự vẽ hình
Ta có:
AMB=CMN(2 góc đối đỉnh)
AMC=BMN(2 góc đối đỉnh)
Mà AMB+AMC=180
BMN+MNC=180
=> AMB+BMN=180
=>3 điểm A,M,N thẳng hàng
a) Ta có: \(\dfrac{AB}{AD}=\dfrac{AM}{AI}=\dfrac{1}{2}\)
⇒ DI // BM
mà M ∈ BC ⇒ DI // BC ( 1 )
b) Ta có: \(\dfrac{BA}{AD}=\dfrac{CA}{CE}=\dfrac{1}{2}\)
⇒ BC // DE ( 2 )
Từ ( 1) và ( 2) có: DE // BC (cmt) và DI // BC (cmt)
Ta thấy qua điểm D nằm ngoài BC kẻ được 2 đường thẳng song song với BC, điều này trái với tiên đề Ơ-clít nên hai đường thẳng DE và DI phải trùng nhau
⇒ D, I, E cùng nằm trên một đường thẳng
⇒ D, I, E thẳng hàng
1) Xét ΔADI có
B là trung điểm của AD(gt)
M là trung điểm của AI(gt)
Do đó: BM là đường trung bình của ΔADI(Định nghĩa đường trung bình của tam giác)
Suy ra: BM//DI(Định lí 2 về đường trung bình của tam giác)
hay DI//BC
Vẽ K là trung điểm CD
Ta có KM là đường trung bình của tam giác CBD
\(\Rightarrow MK=\frac{1}{2}BD=AD\) và MK//AD
Do đó ADMKM là hình bình hành
\(\Rightarrow I\)là trung điểm của DK\(\Rightarrow DI=\frac{1}{2}DK\)
Mà \(DK=\frac{1}{2}CD\)
Vậy DI=\(\frac{1}{4}CD\)
D= 1/4 tổng số hữu tỉ