Tính giá trị biểu thức :
\(H=9^{\frac{1}{\log_63}}+4^{\frac{1}{\log_82}}-10^{\log99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}\left( {\frac{5}{{ - 4}} + 3\frac{1}{3}} \right):\frac{{10}}{9}\\ = \left( {\frac{{ - 5}}{4} + \frac{{10}}{3}} \right):\frac{{10}}{9}\\ = \left( {\frac{{ - 5.3}}{{4.3}} + \frac{{10.4}}{{3.4}}} \right):\frac{{10}}{9}\\ = \left( {\frac{{ - 15}}{{12}} + \frac{{40}}{{12}}} \right):\frac{{10}}{9}\\ = \frac{{25}}{{12}}.\frac{9}{{10}}\\ = \frac{{15}}{8}\end{array}\)\(\).
(-3/4+7/10):(-1/5)-2/9=-1/20:(-1/5)-2/9=1/4-2/9=1/36
# hok tốt #
=1.1.2.2.3.3.....9.9/2.2.3.3.4.4....10.10
=1/10.10
=1/100
k to nha
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{4}{10}=\frac{2}{5}\)
CHÚC BẠN HỌC TỐT!!!!!!!!
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)
Đặt \(A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)
Nhận xét:
\(\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4\times5}=\frac{1}{4}-\frac{1}{5};......;\frac{1}{9\times10}=\frac{1}{9}-\frac{1}{10}\)
Do đó \(A=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}-\frac{1}{10}\)
\(A=\frac{2}{5}\)
\(I=9^{\frac{1}{\log_63}}+4^{\frac{1}{\log_82}}-10^{\log99}=\left(3^2\right)^{\log_36}+\left(2^2\right)^{\log_28}-99\)
\(=3^{\log_36^2}+2^{\log_38^2}-99=6^2+8^2-99=1\)