cho tam giác ABC vuông tại A . Đường cao AH . D là 1 điểm thuộc cạnh AB . cm : I thuộc đường trung trực của AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: Hai đường chéo AH và DE cắt nhau tại trung điểm của mỗi đường
=>IA=IH
hay I nằm trên đường trung trực của AH
a:
ΔABC cân tại A có AH là đường cao
nên AH là trung trực của BC
I nằm trên trung trực của AB
=>IA=IB
I nằm trên trung trực của BC
=>IB=IC
=>IA=IC
b: IA=IC
=>góc IAC=góc ICA
=>góc ICE=góc IAD
Xét ΔIEC và ΔIDA có
CE=DA
góc ICE=góc IAD
IC=IA
=>ΔIEC=ΔIDA
=>IE=ID
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AH=AK
AD chung
=>ΔAHD=ΔAKD
b: AK=AH
DH=DK
=>AD là trung trực của HK
a:Ta có: ΔABC cân tại A
mà AH là đường trung trực
nên AH là phân giác của góc BAC
b: Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chung
\(\widehat{MAI}=\widehat{NAI}\)
Do đó: ΔAMI=ΔANI
Suy ra: AM=AN; IM=IN
=>AI là đường trung trực của MN
=>AH là trung trực của MN
=>HM=HN
hay ΔHMN cân tại H
a/ Vì AH là tia p/g của \(\widehat{BAC}\) (gt)
=> \(\widehat{BAH}=\widehat{CAH}=\frac{60^o}{2}=30^o\)
Vậy \(\widehat{BAH}=30^o\)
b/ Xét ΔAHB và ΔAHK có:
AH: Cạnh chung
\(\widehat{BAH}=\widehat{CAH}\) (AH là tia p/g của \(\widehat{BAC}\) (gt))
AB = AK (gt)
=> ΔAHB = ΔAHK(c.g.c)(đpcm)
c/ Vì ΔAHB = ΔAHK (ý b)
=> \(\widehat{AHB}=\widehat{AHK}\) (2 góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHK}=180^o\) (kề bù)
=> \(\widehat{AHB}=\widehat{AHK}=\frac{180^o}{2}=90^o\)
=> AH \(\perp\) BK (đpcm)
d/ Xét ΔAHN và ΔAHQ có:
\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\)
AH: Cạnh chung
\(\widehat{BAH}=\widehat{CAH}\) (AH là p/g của \(\widehat{BAC}\) (gt))
=> ΔAHN = ΔAHQ(g.c.g)
=> HN = HQ(2 cạnh tương ứng) (1)
mà \(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\Rightarrow AH\perp QN\) (2)
Từ (1) và (2)
=> AH là đường trung trực của QN (đpcm)
I là 1 diểm AH ,KF