K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

I là 1 diểm AH ,KF

25 tháng 10 2021

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: Hai đường chéo AH và DE cắt nhau tại trung điểm của mỗi đường

=>IA=IH

hay I nằm trên đường trung trực của AH

23 tháng 8 2022

Cho e xin cách vẽ hình đc ko ạ 

 

a:

ΔABC cân tại A có AH là đường cao

nên AH là trung trực của BC

I nằm trên trung trực của AB

=>IA=IB

I nằm trên trung trực của BC

=>IB=IC

=>IA=IC

b: IA=IC

=>góc IAC=góc ICA
=>góc ICE=góc IAD

Xét ΔIEC và ΔIDA có

CE=DA

góc ICE=góc IAD

IC=IA

=>ΔIEC=ΔIDA

=>IE=ID

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AH=AK

AD chung

=>ΔAHD=ΔAKD

b: AK=AH

DH=DK

=>AD là trung trực của HK

a:Ta có: ΔABC cân tại A

mà AH là đường trung trực

nên AH là phân giác của góc BAC

b: Xét ΔAMI vuông tại M và ΔANI vuông tại N có 

AI chung

\(\widehat{MAI}=\widehat{NAI}\)

Do đó: ΔAMI=ΔANI

Suy ra: AM=AN; IM=IN

=>AI là đường trung trực của MN

=>AH là trung trực của MN

=>HM=HN

hay ΔHMN cân tại H

21 tháng 12 2016

a/ Vì AH là tia p/g của \(\widehat{BAC}\) (gt)

=> \(\widehat{BAH}=\widehat{CAH}=\frac{60^o}{2}=30^o\)

Vậy \(\widehat{BAH}=30^o\)

b/ Xét ΔAHB và ΔAHK có:

AH: Cạnh chung

\(\widehat{BAH}=\widehat{CAH}\) (AH là tia p/g của \(\widehat{BAC}\) (gt))

AB = AK (gt)

=> ΔAHB = ΔAHK(c.g.c)(đpcm)

c/ Vì ΔAHB = ΔAHK (ý b)

=> \(\widehat{AHB}=\widehat{AHK}\) (2 góc tương ứng)

\(\widehat{AHB}+\widehat{AHK}=180^o\) (kề bù)

=> \(\widehat{AHB}=\widehat{AHK}=\frac{180^o}{2}=90^o\)

=> AH \(\perp\) BK (đpcm)

d/ Xét ΔAHN và ΔAHQ có:

\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\)

AH: Cạnh chung

\(\widehat{BAH}=\widehat{CAH}\) (AH là p/g của \(\widehat{BAC}\) (gt))

=> ΔAHN = ΔAHQ(g.c.g)

=> HN = HQ(2 cạnh tương ứng) (1)

\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\Rightarrow AH\perp QN\) (2)

Từ (1) và (2)

=> AH là đường trung trực của QN (đpcm)