K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{xy+yz+xz}{y+z}=\frac{1}{2}\\ \frac{xy+yz+xz}{z+x}=\frac{1}{3}\\ \frac{xy+yz+xz}{x+y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x+z}{y+z}=\frac{3}{2}\\ \frac{x+y}{x+z}=\frac{4}{3}\\ \frac{y+z}{x+y}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2x-3y-z=0\\ -x+3y-4z=0\\ -x+y+2z=0\end{matrix}\right.\Rightarrow 3x=5y=15z\)

Thay vào phương trình ban đầu: \(5z+\frac{3z.z}{3z+z}=\frac{1}{2}\Leftrightarrow z=\frac{2}{23}\Rightarrow x=\frac{10}{23},y=\frac{6}{23}\)

Thử lại thấy đúng

Vậy nghiệm của HPT là \((x,y,z)=(\frac{10}{23},\frac{6}{23},\frac{2}{23})\)

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

23 tháng 2 2020

bạn nghịch đảo lên sau đó đặt ẩn phụ là giải được

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

24 tháng 10 2018

H/d nè:\(\frac{xy}{x+y}=\frac{6}{5}\Rightarrow\frac{x+y}{xy}=\frac{5}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\)

Tương tự 2 cái còn lại:....

Sau đó cộng 3 cái lại tìm được:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) rồi trừ đi các vế tìm x,y,z

thiếu 1 pt nữa

16 tháng 8 2017

Bài này đúng đề. Không biết giải thì im.

30 tháng 11 2019

\(\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{12}\\\frac{y+z}{yz}=\frac{5}{18}\\\frac{z+x}{zx}=\frac{13}{36}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{y}+\frac{1}{x}=\frac{5}{12}\left(1\right)\\\frac{1}{z}+\frac{1}{y}=\frac{5}{18}\left(2\right)\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\left(3\right)\end{cases}}\)

Cộng vế với vế,ta được: \(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{19}{18}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{19}{36}\)(4)

Từ (1) và (4) suy ra : \(\frac{1}{z}=\frac{1}{9}\Rightarrow z=9\)

từ (2) và (4) suy ra : \(\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

từ (3) và (4) suy ra: \(\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.