Giải bất phương trình:
\(x+x\sqrt{10-x^2}+\sqrt{10-x^2}>7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
ĐKXĐ : \(1\le x\le3\)
Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)
<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)
Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)
Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)
Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)
mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2)
Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)
<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)
Vậy x = 2 là nghiệm bất phương trình
Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á
Đk: \(-7\le x\le10\)
\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)
\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)
\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)
Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:
\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)
Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.
`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1` `ĐK: -7 <= x <= 10`
Đặt `\sqrt{10-x}-\sqrt{x+7}=t`
`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`
`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`
Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`
`<=>2t+17-t^2=2`
`<=>t^2-2t-15=0`
`<=>[(t=5),(t=-3):}`
`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`
`<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)
`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`
`<=>-x^2+3x+70=16`
`<=>[(x=9),(x=-6):}` (t/m)
Vậy `S={-6;9}`
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(ĐK:x\ge5\)
BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)
\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)
\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)
\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)
\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)
Chúc bạn học tốt !!!
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
ĐKXĐ: \(x\ge5\)
Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)
\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)
Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow x^2-7x+10< 16\)
\(\Leftrightarrow x^2-7x-6< 0\)
Chúc bạn học tốt !!!
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)
\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)
\(\Rightarrow x^2-7x+10=16\)
\(\Rightarrow x^2-2x-5x+10=16\)
\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)
...........................