giải bất pt:
\(\sqrt{2x+10}\ge\sqrt{5x+10}-\sqrt{x-2}\)
(giúp mình với nè )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )
Vt >/ 3 + 2 = 5
VP </ 5
dấu = xảy ra khi x =-1
Lời giải:
a) \(3x^2+4x+10=2\sqrt{14x^2-7}=2\sqrt{7(2x^2-1)}\)
Áp dụng BĐT AM-GM:
\(3x^2+4x+10\leq 7+(2x^2-1)\)
\(\Leftrightarrow x^2+4x+4\leq 0\)
\(\Leftrightarrow (x+2)^2\leq 0\)
Mà \((x+2)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+2)^2=0\)
\(\Leftrightarrow x=-2\) (thử lại thấy thỏa mãn)
b) Có:
\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)
\(\Leftrightarrow \sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
\(\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-(9x-3)=0\)
\(\Leftrightarrow (9x-3)\left(\frac{1}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-3=0\Leftrightarrow x=\dfrac{1}{3}\\\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\left(2\right)\end{matrix}\right.\)
Xét (2):
Ta thấy:
\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\geq \sqrt{4x^2-4x+4}=\sqrt{(2x-1)^2+3}\geq \sqrt{3}>1\)
Do đó \((2)\) vô lý
Vậy PT có nghiệm \(x=\frac{1}{3}\)
cos2x+5=2.(2−cosx)(sinx−cosx)cos2x+5=2.(2−cosx)(sinx−cosx)
⇔2.cos2x−1+5=2.(2.sinx−2.cosx−cosx.sinx+cos2x)⇔2.cos2x−1+5=2.(2.sinx−2.cosx−cosx.sinx+cos2x)
⇔cos2x+2=2.sinx−2.cosx−cosx.sinx+cos2x⇔cos2x+2=2.sinx−2.cosx−cosx.sinx+cos2x
⇔2.(sinx−cosx)−cosx.sinx=2⇔2.(sinx−cosx)−cosx.sinx=2
Đặt t=sinx−cosxt=sinx−cosx , khi đó ta có t2−12=(−cosx.sinx)t2−12=(−cosx.sinx)
pt ⇔2.t+t2−12=2⇔2.t+t2−12=2
bạn thử bình phương 2 vế đi. nhớ điều kiện nhé!
cám ơn bạn