Tính tổng
F=1.2+3.4+5.6+7.8+....+97.98+99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Fx3=1x2x3+2x3x(4-1)+3x4x(5-2)+4x5x(6-3)+...+99x100x(101-98
Fx3=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+4x5x6-3x4x5+...+99x100x101-98x99x100
Fx3=99x100x101
F=333300
TRả lời ;..............................................
SCSH: ( 100 - 1,2 ) : 2 = 49,4
Tổng: ( 100 + 1,2 ) : 2 = 50,6
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
3A = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3A = 99.100.101
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
C1:
\(A=1.2+2.3+3.4+4.5+....+99.100\\ \Rightarrow3A=1.2\left(3-0\right)+2.3\left(4-1\right)+3.4\left(5-2\right)+....+99.100\left(101-98\right)\\ \Rightarrow3A=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100\\ \Rightarrow3.A=99.100.101\\ \Rightarrow A=\frac{99.100.101}{3}=333300\)
G = \(1^2\)+\(2^2\)+ \(3^2\)+....+\(100^2\)
G=1 +2(1+1) +3(2+1) +..... + 100(99+1)
G=1 + 1.2+ 2 + 2.3 +3+ ......+ 99.100+100
G=(1+2+3+....+100) +(1.2+2.3+.....+99.100)
G= \(\frac{100\left(100+1\right)}{2}\)+\(\frac{100\left(100-1\right)\left(100+1\right)}{3}\)
G=5050+333300
G=338350
\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\left(đpcm\right)\)
Ta có : \(VT=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)
\(\Rightarrow\) \(ĐPCM\)
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
3F = 1 . 2 . 3 + 3 . 4 . ( 5 - 2 ) + 5 . 6 . ( 7 - 4 ) +.....+ 99 . 100 . (101 - 98 )
3F = 1. 2 . 3 + 3. 4 . 5 - 2 . 3 . 4 + 5 . 6 . 7 - 4 . 5 . 6 +.....+ 99 . 100 . 101 - 98 . 99 . 100
3F = 1 . 2 . 3 + 99 . 100. 101
3F = 3 . 2 + 3 . 33 . 100 . 101
3F = 3 ( 2 + 333 300)
=>F = 3 . 333 302 : 3
=> F = 333 302
Vậy F = 333 302
Hinh nhu khong dung ban a