Tính tổng
H=1^2+3^2+5^2+7^2+......+99^2+101^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(\Rightarrow A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow A=1-\frac{1}{101}\)
\(\Rightarrow A=\frac{100}{101}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdot\cdot\cdot\cdot+\frac{2}{99\cdot101}\)
=\(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\cdot\cdot\cdot\cdot+\frac{2}{99}-\frac{2}{101}\)
=\(2-\frac{1}{101}\)
\(\frac{202}{101}-\frac{1}{101}=\frac{201}{101}\)
\(S=1+\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow S-1=\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{1}{4}\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}\)
\(\Rightarrow\dfrac{1}{4}\left(S-1\right)-\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}-\dfrac{1}{2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{3}{4}\left(S-1\right)=\dfrac{1}{2^{103}}\)
\(\Rightarrow S-1=\dfrac{1}{2^{103}}:\dfrac{3}{4}\)
\(\Rightarrow S-1=\dfrac{4}{3.2^{103}}\)
\(\Rightarrow S=\dfrac{4}{3.2^{103}}+1\)
S=1+12+123+125+...+12101S=1+12+123+125+...+12101
⇒S−1=12+123+125+...+12101⇒S−1=12+123+125+...+12101
⇒14(S−1)=123+125+127+...+12103⇒14(S−1)=123+125+127+...+12103
⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101
⇒34(S−1)=12103⇒34(S−1)=12103
⇒S−1=12103:34⇒S−1=12103:34
⇒S−1=43.2103⇒S−1=43.2103
⇒S=43.2103+1
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)
\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)
\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)
....
\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)
=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)
=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)
=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)
=\(\frac{5}{2}\cdot\frac{100}{101}\)
\(=\frac{250}{101}\)
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\frac{100}{101}\)
\(B=\frac{250}{101}\)
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{99x101}=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{101-99}{99x101}=\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{2}{1.2}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(H=1^2+3^2+5^2+....+101^2\)
\(H=1^2+2^2+3^3+...+101^2+102^2-\left(2^2+4^4+....+102^2\right)\)
\(H=1+2\left(1+1\right)+3\left(2+1\right)+...+102\left(101+1\right)-2^2\left(1^2+2^2+...+51^2\right)\)
\(H=1+1.2+2+2.3+3+....+101.102+102-2^2\left(1+2\left(1+1\right)+...+51\left(50+1\right)\right)\)
\(H=\left(\left(1+2+...+102\right)+\left(1.2+2.3+...+101.102\right)\right)-2^2\left(1+1.2+2+...+50.51+51\right)\)
Chắc cậu đã biết cách nhân ở bễ 1+2+3+...+102 và cách 1.2+2.3+....+101.102 rồi nhỉ ???? Dạng nhân 3 mỗi vế rồi loại dần ý.
\(H=\left(5253+353702\right)-2^2\left(\left(1+2+...+51\right)+\left(1.2+2.3+...+50.51\right)\right)\)
\(H=358955-4\left(1326+44200\right)=358955-182104=176851\)
Sai thì thôi ha .... nhưng cách đúng rồi đó .... chỉ sợ sai số thôi