tìm x biết y =\(\frac{x^4-2x^3+1}{x^2+1}\)với x,y ϵ Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Dựa theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
-> x = \(12.\dfrac{3}{2}=18\)
y =\(12.\dfrac{4}{3}=16\)
z =\(12.\dfrac{5}{4}\) = 15
a) (x - 2)(y + 1) = 7
=> x - 2, y + 1 ∈ Ư(7)
Vì x, y ∈ Z => x - 2, y + 1 ∈ Z
=> x - 2, y + 1 ∈ {1; -1; 7; -7}
Lập bảng giá trị:
x - 2 | 1 | 7 | -1 | -7 |
y + 1 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 6 | 0 | -8 | -2 |
Đối chiếu điều kiện x, y ∈ Z
=> Các cặp (x, y) cần tìm là:
(3; 6); (9; 0); (1; -8); (-5; -2)
3/ Ta có:
\(A=\dfrac{1-2x}{x+3}\)
\(A=\dfrac{-2x+1}{x+3}\)
\(A=\dfrac{-2x-6+7}{x+3}\)
\(A=\dfrac{-2\left(x+3\right)+7}{x+3}\)
\(A=-2+\dfrac{7}{x+3}\)
A nguyên khi \(\dfrac{7}{x+3}\) nguyên
⇒ 7 ⋮ \(x+3\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
a)\(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{1}{x}\)
\(\Rightarrow\frac{2y+1}{6}=\frac{1}{x}\)
\(\Rightarrow x\left(2y+1\right)=6\)
\(\Rightarrow x;2y+1\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
....
b)\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{6y}-\frac{6}{6y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-6}{6y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-6\right)=6y\)
\(\Rightarrow2xy-12-6y=0\)
\(\Rightarrow2\left(xy-3y-6\right)=0\)
\(\Rightarrow xy-3y-6=0\)
...
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
Sử dụng tính chất của dãy tỉ số bằng nhau thì :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
Do \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
Suy ra \(\frac{x+y+z+2}{9}=\frac{x+y+z+2}{2x+5}< =>2x+5=9\)
\(< =>2x=4< =>x=\frac{4}{2}=2\)
Thế vào thì ta được : \(\hept{\begin{cases}\frac{x+1}{2}=\frac{y-1}{3}< =>\frac{3}{2}=\frac{y-1}{3}\\\frac{x+1}{2}=\frac{z+2}{4}< =>\frac{3}{2}=\frac{z+2}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}2\left(y-1\right)=9\\2\left(z+2\right)=12\end{cases}< =>\hept{\begin{cases}2y-2=9\\2z+4=12\end{cases}}}\)
\(< =>\hept{\begin{cases}2y=11< =>y=\frac{11}{2}\\2z=8< =>z=\frac{8}{2}=4\end{cases}}\)
Vậy ta có bộ số x,y,z thỏa mãn đẳng thức sau : \(\left\{2;\frac{11}{2};4\right\}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z}{2x+5}\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}=\frac{x+y+z}{9}\)(1)
Từ (1) => \(\frac{x+y+z}{2x+5}=\frac{x+y+z}{9}\)
=> 2x + 5 = 9
=> 2x = 4
=> x = 2
Thay x vào (1)
=> \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\)
=> \(\frac{y-1}{3}=\frac{z+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{3}{2}.3+1\\z=\frac{3}{2}.4-2\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)
Vậy x = 2 ; y = 11/2 ; z = 4
y=\(\frac{x^4-2x^3+1}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2x+2}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2\left(x+1\right)}{x^2+1}\)
vì x và y đều nguyên nên \(x^2\)+1 phải là ước của x+1
vì x+1 <= \(x^2\)+1
nên ta có \(x^2\)+1 = x+1
=> x=0 hoặc x=1
với x=0 thì y=1
với x=1 thì y =0
vậy ta có (x;y)=(0;1); (1;0)