a) Rút gọn Q
b) Tìm x để Q < 3
c) Tìm GTNN của P = Q/(x-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
a) A=x^2+2
b) mình nghĩ x thuộc tập hợp R
c)GTNN của A=1/4 khi x=1/2
\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
ĐKXĐ : x khác 1 , x lớn hơn hoặc bằng 0
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}-1}{1}=\frac{x+2}{\sqrt{x}}\)
b/ \(A=2=\frac{x+2}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{x}=x+2\)
\(\Rightarrow x-2\sqrt{x}+2=0\)
\(\Rightarrow x-2\sqrt{x}+1+1=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2+1=0\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2=-1\)
mà\(\left(\sqrt{x}-1\right)^2\ge0\)(ko thỏa mãn)
P/s ko bik phải làm sai ko mà tính ko ra @*@ bạn xem sai chỗ nào để mik sửa ạ
a, \(Q=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}-\frac{x^2-x}{4-x^2}\right):\left(3-\frac{3x+4}{x+2}\right)\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{x^2+3x+2-2x\left(x-2\right)+x^2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{3x+6-3x-4}{x+2}\right)\)
\(=\left(\frac{2x^2+2x+2-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{2}{x+2}\right)=\frac{2\left(3x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}=\frac{3x+1}{x-2}\)
b, \(Q< 3\Rightarrow\frac{3x+1}{x-2}-3< 0\Leftrightarrow\frac{3x+1-3x+6}{x-2}< 0\)
\(\Rightarrow x-2< 0\Leftrightarrow x>2\)