K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

a, \(Q=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}-\frac{x^2-x}{4-x^2}\right):\left(3-\frac{3x+4}{x+2}\right)\)ĐK : \(x\ne\pm2\)

\(=\left(\frac{x^2+3x+2-2x\left(x-2\right)+x^2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{3x+6-3x-4}{x+2}\right)\)

\(=\left(\frac{2x^2+2x+2-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{2}{x+2}\right)=\frac{2\left(3x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}=\frac{3x+1}{x-2}\)

b, \(Q< 3\Rightarrow\frac{3x+1}{x-2}-3< 0\Leftrightarrow\frac{3x+1-3x+6}{x-2}< 0\)

\(\Rightarrow x-2< 0\Leftrightarrow x>2\)

26 tháng 9 2019

\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)

ĐKXĐ : x khác 1 , x lớn hơn hoặc bằng 0

\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}-1}{1}=\frac{x+2}{\sqrt{x}}\)

b/ \(A=2=\frac{x+2}{\sqrt{x}}\)

\(\Rightarrow2\sqrt{x}=x+2\)

\(\Rightarrow x-2\sqrt{x}+2=0\)

\(\Rightarrow x-2\sqrt{x}+1+1=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2+1=0\)

\(\Rightarrow\left(\sqrt{x}-1\right)^2=-1\)

\(\left(\sqrt{x}-1\right)^2\ge0\)(ko thỏa mãn)

P/s ko bik phải làm sai ko mà tính ko ra @*@ bạn xem sai chỗ nào để mik sửa ạ

12 tháng 10 2019

điều kiện \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

a) A= (\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}\)\(+\frac{\sqrt{x}}{x-1}\)) : \(\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(1+\sqrt{x}\right)}\))

=\(\frac{x+2\sqrt{x}}{x-1}:\frac{x+2\sqrt{x}}{x\left(1+\sqrt{x}\right)}\)=\(\frac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{x}{\sqrt{x}-1}\)

b) A<1 <=> \(\frac{x}{\sqrt{x}-1}< 1< =>\frac{x-\sqrt{x}+1}{\sqrt{x}-1}< 0\)<=> \(\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}-1}< 0\)<=> \(\sqrt{x}-1< 0< =>x< 1\)kết hợp với điều kiện x>0 ta được 0<x<1

12 tháng 10 2019

c) Min \(\sqrt{A}\)

Điều kiện A \(\ge0< =>\frac{x}{\sqrt{x}-1}\ge0< =>\hept{\begin{cases}x\ge0\\\sqrt{x}-1>0\end{cases}}< =>x>1;\)

 (\(\sqrt{x}-2\))2 = x-4\(\sqrt{x}+4\)\(\ge0\)<=>x\(\ge4\left(\sqrt{x}-1\right)\) <=> \(\frac{x}{\sqrt{x}-1}\ge4\) (vì \(\sqrt{x}-1>0\))

hay A \(\ge4=>\sqrt{A}\ge2\)

\(\sqrt{A}=2\) khi \(\sqrt{x}-2=0< =>x=4\)

24 tháng 7 2017

a. ĐKXĐ \(x\ge0\)và \(x\ne9\)

Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)

\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)

Vậy với \(0\le x< \frac{9}{4}\)thì K<-1

c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)

\(\Rightarrow K\ge-3\)

Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

17 tháng 5 2017

a, tự lm......

P=x2 / x-1

b, P<1

=> x2/x-1  <1

<=>x2/x-1 -1 <0

<=>x2-x+1 / x-1<0

Vi x2-x+1= (x -1/2 )2+3/4 >0

=> Để P<1

x-1 <0

x <1

c, x2/x-1 = x2-1+1/x-1

             = x+1 +1/x-1

               = 2 +(x-1) + 1/x-1

Áp dụng BDT Cô si ta có :

x-1  + 1/x-1 >hoặc = 2

=> P>= 3

Đầu = xảy ra <=> x=2( x >1)

Vay......

5 tháng 8 2017

làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2