K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

Chào bạn, bạn hãy theo dõi bài giải của mình nhé!

Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(=>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(=>2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(=>A=1-\frac{1}{2^{100}}\)

Ta có : \(1>\frac{1}{2^{100}}=>A>1-1=0\)

\(\frac{1}{2^{100}}>0=>1-\frac{1}{2^{100}}< 1-0=1\)

\(=>0< A< 1\)

Chúc bạn học tốt!

28 tháng 4 2016

Dễ thấy A>0(vì 1/2>0;1/2^2>0;...;1/2^100>0 =>1/2+1/2^2+1/2^3+...+1/2^100>0)

2A=1+2/2^2+2/2^3+...+2/2^100(rút gọn 1 bước)

2A=1+1/2+1/2^2+...+1/2^99

2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)

A=1-1/2^100<1

Vậy A<1

Cậu tự KL nhé