Giair phương trình nghiệm nguyên : a)\(x^2-xy+y^2=3\)
b) \(y^2=1+x+x^2+x^3+x^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4y^2=4x^4+4x^3+4x^2+4x+4\)
Ta có:
\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x\right)^2+\left(3x^2+4x+4\right)>\left(2x^2+x\right)^2\)
\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2-5x^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}\left(2y\right)^2=\left(2x^2+x+1\right)^2\\\left(2y\right)^2=\left(2x^2+x+2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\5x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=3\end{matrix}\right.\)
- Với \(x=-1\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=3\Rightarrow y^2=121\Rightarrow y=\pm11\)
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
Với có ít nhất x,y = 1 thì VT > VP
Với x > 1, y > 1 thì
\(\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{y^2}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}< 1\)
Hay VT < 1
Vậy PT không có nghiệm nguyên dương
a) \(x^2-xy+y^2=3\)
\(\Leftrightarrow\left(x+y\right)^2=3\left(1+xy\right)\)
\(\Rightarrow xy\ge-1\).
\(x^2-xy+y^2=3\)
\(\Leftrightarrow\left(x-y\right)^2=3-xy\)
\(\Rightarrow xy\le-1\)
Do vai trò \(x,y\)như nhau nên giả sử \(x\ge y\).
- \(xy=-1\Rightarrow x=1,y=-1\).
Thử lại thỏa mãn.
- \(xy=0\Rightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)dễ thấy đều không thỏa.
- \(xy=1\Rightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)không thỏa.
- \(xy=2\Rightarrow\orbr{\begin{cases}x=2,y=1\\x=-1,y=-2\end{cases}}\)thỏa.
- \(xy=3\Rightarrow\orbr{\begin{cases}x=3,y=1\\x=-1,y=-3\end{cases}}\)không thỏa.
b) \(x=0\Rightarrow y=\pm1\)thỏa mãn.
\(x\ne0\):
\(y^2=1+x+x^2+x^3+x^4\)
\(\Leftrightarrow4y^2=4+4x+4x^2+4x^3+4x^4\)
Ta có: \(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)
suy ra \(4y^2=\left(2x^2+x+1\right)^2\)
\(\left(2x^2+x+1\right)^2=4+4x+4x^2+4x^3+4x^4\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Tử đây suy ra \(y\).