Tìm m để hàm số \(y=\frac{x^2+mx+1}{x+m}\) đạt cực tiểu tại x = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=3x^2-2mx+2\left(m+1\right)\)
\(y''=6x-2m\)
Hàm đạt cực tiểu tại \(x=-1\) khi:
\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3+2m+2\left(m+1\right)=0\\-6-2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{5}{4}\\m< -3\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Đáp án C
Bảng biến thiên
Quan sát bảng biến thiên ta thấy m=1 thỏa yêu cầu bài toán.
a) y′ = 3 x 2 + 2(m + 3)x + m
y′ = 0 ⇔ 3 x 2 + 2(m + 3)x + m = 0
Hàm số đạt cực trị tại x = 1 thì:
y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3
Khi đó,
y′ = 3 x 2 – 3;
y′′ = 6x;
y′′(1) = 6 > 0;
Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.
b) y′ = −( m 2 + 6m) x 2 − 4mx + 3
y′(−1) = − m 2 − 6m + 4m + 3 = (− m 2 − 2m – 1) + 4 = −(m + 1)2 + 4
Hàm số đạt cực trị tại x = -1 thì :
y′(−1) = − ( m + 1 ) 2 + 4 = 0 ⇔ ( m + 1 ) 2 = 4
⇔
Với m = -3 ta có y’ = 9 x 2 + 12x + 3
⇒ y′′ = 18x + 12
⇒ y′′(−1) = −18 + 12 = −6 < 0
Suy ra hàm số đạt cực đại tại x = -1.
Với m = 1 ta có:
y′ = −7 x 2 − 4x + 3
⇒ y′′ = −14x − 4
⇒ y′′(−1) = 10 > 0
Suy ra hàm số đạt cực tiểu tại x = -1
Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.
y′ = 3 x 2 + 2(m + 3)x + m
y′ = 0 ⇔ 3 x 2 + 2(m + 3)x + m = 0
Hàm số đạt cực trị tại x = 1 thì:
y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3
Khi đó,
y′ = 3 x 2 – 3;
y′′ = 6x;
y′′(1) = 6 > 0;
Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.
Tập xác định : \(D=R\backslash\left\{-m\right\}\)
Ta có : \(y=x+\frac{1}{x+m}\Rightarrow y'=1-\frac{1}{\left(x+m\right)^2}\Rightarrow y"=\frac{2}{\left(x+m\right)^3}\)
Hàm số đạt cực tiểu tại \(x=1\Leftrightarrow\begin{cases}y'\left(1\right)=0\\y"\left(1\right)>0\end{cases}\)
\(\Leftrightarrow\begin{cases}1-\frac{1}{\left(x+m\right)^2}=0\\\frac{2}{\left(x+m\right)^3}>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m=0\\m>-1\end{cases}\) \(\Leftrightarrow m=0\)
Vậy m = 0 thì hàm số đạt cực tiểu tạo x = 1