K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

Ta có : \(y"=6mx+6\)

Hàm số đạt cực đại tại điểm \(x=2\Leftrightarrow\begin{cases}y'\left(2\right)=0\\y"\left(2\right)< 0\end{cases}\)

                                                    \(\Leftrightarrow\begin{cases}12m+24=0\\12m+6< 0\end{cases}\)\(\Leftrightarrow m=-2\)

23 tháng 4 2016

\(y'=3mx^2+6x+12\)

Để hàm số đạt cực đại tại điểm x = 2 thì \(y'\left(2\right)=0\Leftrightarrow m=-2\)

Với \(m=-2\) ta có \(y'=3\left(-2x^2+2x+4\right)\) 

Ta thấy hàm số đạt cực đại tại điểm \(x=2\)

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

NV
23 tháng 5 2021

a.

\(y'=x^2+2\left(m^2-1\right)x+2m-3\)

\(y''=2x+2\left(m^2-1\right)\)

Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)

Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài

b.

\(y'=x^2+2mx+3\)

\(y''=2x+2m\)

Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)

\(\Rightarrow m=2\)

27 tháng 10 2017

Đáp án là A

2 tháng 10 2019

Chọn D

NV
7 tháng 7 2021

\(y'=x^2+x+m\)

Để hàm có cực đại cực tiểu có hoành độ lớn hơn m thì:

\(\left\{{}\begin{matrix}\Delta=1-4m>0\\m< x_1< x_2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{1}{4}\\\left(x_1-m\right)\left(x_2-m\right)>0\\\dfrac{x_1+x_2}{2}>m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{1}{4}\\x_1x_2-\left(x_1+x_2\right)m+m^2>0\\-\dfrac{1}{2}>m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{1}{2}\\2m+m^2>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{1}{2}\\\left[{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -2\)