K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Hỏi đáp Toán

a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).

b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)

c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).

Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).

d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:

Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)

\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)

12 tháng 8 2019

Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca

a: BC=10cm

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔHAB∼ΔHCA

4 tháng 3 2022

Cảm ơn bạn rất nhìu😘

6 tháng 5 2018

a)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

        \(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

        \(\Leftrightarrow\)   \(BC=\sqrt{100}=10\)

b)  Xét  \(\Delta HAB\)và   \(\Delta HCA\)có:

      \(\widehat{AHB}=\widehat{CHA}=90^0\)

     \(\widehat{HAB}=\widehat{HCA}\)  (cùng phụ với góc HAC)

suy ra:   \(\Delta HAB~\Delta HCA\)(g.g)

c)  Xét \(\Delta ABH\)và  \(\Delta CBA\)có:

       \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) CHUNG

suy ra:   \(\Delta ABH~\Delta CBA\)  (g.g)

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\) 

\(\Rightarrow\)\(BH.BC=AB^2\)  (1)

\(BE=BC-CE=10-4=6\)  \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\)  (2) 

Từ (1) và (2) suy ra:   \(BE^2=BH.BC\)

d)    \(S_{ABC}=\frac{AB.AC}{2}=24\)

\(\Delta ABC\)   có   \(BD\)là phân giác \(\widehat{ABC}\)

\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)  

\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)

\(\Rightarrow\)\(S_{BAD}=9\)

Xét  \(\Delta ABD\)và   \(\Delta EBD\) có:

    \(AB=EB\) (câu c)

   \(\widehat{ABD}=\widehat{EBD}\) (gt)

   \(BD:\)chung

suy ra:  \(\Delta ABD=\Delta EBD\) (c.g.c)

\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)

\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)

p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha, 

13 tháng 4 2021

đc

20 tháng 4 2017

a) tính BC:

Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC

ta có: BC2=BA2+AC2

       =>BC2= 62+82

     => BC2= 36+64

     =>BC2= 100

     => BC= \(\sqrt{100}\)

    => BC= 10 (cm)

b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:

Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)

         - tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)

     => \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))

21 tháng 4 2017

có bạn nào giúp minh câu c và d được k. mình k cho

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

d: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm