Xét a, b, c là các số thực thuộc đoạn \(\left[1;2\right]\) và thỏa mãn \(a+b+c\le4\). Chứng minh rằng :
\(\frac{a}{bc+2}+\frac{b}{ca+2}+\frac{c}{ab+2}>\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b-1\right)+b\left(1-c\right)+c\left(1-a\right)\le1\\ \Leftrightarrow-abc+ab+bc+ca-a-b-c+1\le2-abc\\ \Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\le2-abc\)
lại có \(abc\le1\) nên \(2-abc\ge1\)
ta chứng minh \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)
luôn đúng do \(0\le a;b;c\le1\)
vậy bđt dc cm
tick mik nhaaaaa.mik ms l9 thui
Không mất tính tổng quát, giả sử \(a\ge b\ge c\).
Khi đó: \(\left(a-b\right)\left(b-c\right)\ge0\)
\(\Leftrightarrow ab+bc\ge ac+b^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\\\dfrac{c}{a}+1\ge\dfrac{c}{b}+\dfrac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le2+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
Vì \(1\le c\le a\le2\Rightarrow\left(\dfrac{a}{c}-2\right)\left(\dfrac{2a}{c}-1\right)\le0\)
\(\Leftrightarrow\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)
\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le10\)
Đẳng thức xảy ra khi \(a=b=2;c=1\) và các hoán vị.
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
\(\Rightarrow P\le\dfrac{a}{b+c+1}+\dfrac{b}{b+c+1}+\dfrac{c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow P\le\dfrac{a+b+c}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)=\dfrac{a-1}{b+c+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)+1\)
\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{b+c+1}\right]+1\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{bc+b+c+1}\right]+1\)
\(\Rightarrow P\le\left(1-a\right)\left[\left(1-b\right)\left(1-c\right)-\dfrac{1}{\left(1+b\right)\left(1+c\right)}\right]+1\)
\(\Rightarrow P\le\left(1-a\right)\left(\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right)+1\)
Do \(a;b;c\le1\Rightarrow\left\{{}\begin{matrix}1-a\ge0\\\left(1-b^2\right)\left(1-c^2\right)\le1\\\end{matrix}\right.\) \(\Rightarrow\left(1-a\right)\left[\dfrac{\left(1-b^2\right)\left(1-c^2\right)-1}{\left(1+b\right)\left(1+c\right)}\right]\le0\)
\(\Rightarrow P\le1\)
\(P_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;0\right);\left(1;1;1\right);\left(0;1;1\right);\left(0;0;1\right)\) và các hoán vị
- Giả sử \(2\ge a>b>c\ge0\)
- Áp dụng bđt Cô-si cho 3 số , ta có :
\(\frac{1}{\left(a-b\right)^2}+\left(a-b\right)+\left(a-b\right)\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left(a-b\right).\left(a-b\right)}=3\)
+
\(\frac{1}{\left(b-c\right)^2}+\left(b-c\right)+\left(b-c\right)\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left(b-c\right).\left(b-c\right)}=3\)
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+2\left(a-c\right)\ge6\)
Do đó : \(P\ge\frac{1}{\left(a-c\right)^2}-2\left(a-c\right)+6\)
Do \(2\ge a>b>c\ge0\Rightarrow2\ge a-c>0\)
\(\Rightarrow P\ge\frac{1}{2^2}-2.2+6=\frac{9}{4}\)
Vậy : \(MinP=\frac{9}{4}\Leftrightarrow a=2;b=1;c=0\)và các hoàn vị của nó
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24
Từ giả thiết ta có : \(\begin{cases}\left(b-1\right)\left(c-2\right)\le0\\\left(b-2\right)\left(c-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}bc+2\le2b+c\\bc+2\le b+2c\end{cases}\) \(\Leftrightarrow2\left(bc+2\right)\le3\left(b+c\right)\le3\left(4-a\right)\)
Do đó \(\frac{a^2}{bc+2}\ge\frac{2}{3}.\frac{a^2}{4-a}\), đẳng thức xảy ra \(\Leftrightarrow a=0,b=c=2\)
Tương tự : \(\frac{b^2}{ac+2}\ge\frac{2}{3}.\frac{b^2}{4-b}\) và \(\frac{c^2}{ab+2}\ge\frac{2}{3}.\frac{c^2}{4-c}\)
Suy ra \(\frac{a^2}{bc+2}+\frac{b^2}{ac+2}+\frac{c^2}{ab+2}>\frac{2}{3}\left(\frac{a^2}{4-a}+\frac{b^2}{4-b}+\frac{c^2}{4-c}\right)\) (*) (vì không tồn tại a,b,c để đẳng thức xảy ra)
Xét hàm số \(f\left(t\right)=\frac{t^2}{4-t},t\in\left[1;2\right]\)
Ta có \(f'\left(t\right)=\frac{t\left(8-t\right)}{\left(4-t\right)^2}>0\) mọi \(t\in\left[1;2\right]\) nên hàm số đồng biến trên \(\left[1;2\right]\)
Suy ra \(f\left(t\right)\ge f\left(1\right)=\frac{1}{3}\) với mọi \(t\in\left[1;2\right]\)
Thay t bởi a, b, c vào vế phải của (*) ta được :
\(P=\frac{a^2}{bc+2}+\frac{b^2}{ac+2}+\frac{c^2}{ab+2}>\frac{2}{3}\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=\frac{2}{3}\)
Vậy \(P>\frac{2}{3}\)