Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(2;0;0) và B(1;1;-1). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm 0, tiếp xúc với (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Gọi điểm H là hình chiếu của A 4 ; 1 ; − 2 trên mặt phẳng O x z , khi đó H 4 ; 0 ; − 2 .
Điểm A' đối xứng với A 4 ; 1 ; − 2 qua mặt phẳng O x z nên H 4 ; 0 ; − 2 là trung điểm AA' . Khi đó A ' 2 x H − x A ; 2 y H − y A ; 2 z H − z A → A ' 4 ; − 1 ; − 2
Đáp án A
Dễ thấy tọa độ trung điểm của đoạn thẳng AB là điểm.
Đáp án A
Dễ thấy tọa độ trung điểm của đoạn thẳng AB là điểm
Gọi M là trung điểm của AB, ta có \(M=\left(\frac{3}{2};\frac{1}{2};-\frac{1}{2}\right)\)
Vì (P) là mặt phẳng trung trực của AB nên (P) đi qua M và \(\overrightarrow{AB}=\left(-1;1;-1\right)\) là một vecto pháp tuyến của (P)
Suy ra, phương trình của (P) là : \(\left(-1\right)\left(x-\frac{3}{2}\right)+\left(y-\frac{1}{2}\right)+\left(-1\right)\left(z+\frac{1}{2}\right)=0\)
hay : \(2x-2y+2z-1=0\)
Ta có : \(d\left(O,\left(P\right)\right)=\frac{\left|-1\right|}{\sqrt{2^2+\left(-2\right)^2+2^2}}=\frac{1}{2\sqrt{3}}\)
Do đó phương trình mặt cầu tâm O , tiếp xúc với (P) là \(x^2+y^2+z^2=\frac{1}{12}\)
hay : \(12x^2+12y^2+12z^2-1=0\)