Cho tam giác ABC vuông tại A, có đường cao AH
a) Tam giác ABC đồng dạng với tam giác nào?
b) Biết AB=15cm, AC=20cm. Tính BC, AH, CH, BH
c) Lấy E trên AH. Qua E kẻ đường thẳng song song với BC và cắt AB tại M, AC tại N. Tính S\(_{\Delta AMN}\), S\(\Delta ABC\), \(\frac{S\Delta AMN}{S\Delta ABC}\)
a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)
b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
CH=BC-BH=25-9=16(cm)