Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006 a c giúp e với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-3\right)^{2012}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y-z\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\\z=\dfrac{19}{10}\end{matrix}\right.\)
b: 2015-|x-2015|=x
=>|x-2015|=2015-x
=>x-2015<=0
hay x<=2015
d: |x-999|+|1998-2x|=0
=>x-999=0
hay x=999
a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=B\left(ĐPCM\right)\)
b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v
a, 1004 .2009 + 1005 = (1005-1) .2009 +1005
= 1005 .2009 -2009 +1005
= 1005 .2009 -1004
Vậy ( 1004 .2009 +1005) / (1005 .2009 -1004) =1
b, 1004 .2010 +1 = 1004 .2009 +1004 +1
= (1006 -2) .2009 +1005
= 1006 .2009 -2 .2009 +1005
= 1006 .2009 -4008 +1005
= 1006 .2009 -3013
Vậy (1004 .2010 +1) / (1006 .2009 -3013) = 1
c, 2007 .2009 -2 = 2007.(2008+1) -2
= 2007.2008 +2007 -2
= 2007.2008 +2005
= (2008-1) .2008 +2005
= 2008 .2008 -2008 +2005
= 2008 .2008 -3
Vậy (2008 .2008 -3) / (2007 .2009 -2) =1
\(\left(\frac{1}{2x}-1004\right)^{2008}=\left(\frac{1}{2x}-1004\right)^{2006}\)
\(\Rightarrow\left(\frac{1}{2x}-1004\right)^{2008}-\left(\frac{1}{2x}-1004\right)^{2006}=0\)
\(\Rightarrow\left(\frac{1}{2x}-1004\right)^{2006}.\left(\frac{1}{2x}-1004\right)^2-\left(\frac{1}{2x}-1004\right)^{2006}=0\)
\(\Rightarrow\left(\frac{1}{2x}-1004\right)^{2006}.\left[\left(\frac{1}{2x}-1004\right)^2-1\right]=0\)
\(\Rightarrow\left(\frac{1}{2x}-1004\right)^{2006}=0\) hoặc \(\left(\frac{1}{2x}-1004\right)^2-1=0\)
TH1: \(\left(\frac{1}{2x}-1004\right)^{2006}=0\)
\(\Rightarrow\frac{1}{2x}-1004=0\)
\(\Rightarrow\frac{1}{2x}=1004\)
\(\Rightarrow2x=1:1004=\frac{1}{1004}\)
\(\Rightarrow x=\frac{1}{2008}\)
TH2: \(\left(\frac{1}{2x}-1004\right)^2-1=0\)
\(\Rightarrow\left(\frac{1}{2x}-1004\right)^2=1\)
\(\Rightarrow\frac{1}{2x}-1004=1\) hoặc \(\frac{1}{2x}-1004=-1\)
\(\Rightarrow\frac{1}{2x}=1005\) hoặc \(\frac{1}{2x}=1003\)
\(\Rightarrow x=\frac{1}{2010}\) hoặc \(x=\frac{1}{2006}\)
Vậy \(x\in\left\{\frac{1}{2010};\frac{1}{2008};\frac{1}{2006}\right\}\)
Cảm ơn nhìu nhé