cho a,b,c,d là các số nguyên dương thỏa a^2+c^2=b^2+d^2. chứng minh a+b+c+d là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét : (�2+�2+�2+�2)−(�+�+�+�)(a2+b2+c2+d2)−(a+b+c+d)
=�(�−1)+�(�−1)+�(�−1)+�(�−1)=a(a−1)+b(b−1)+c(c−1)+d(d−1)
Vì �a là số nguyên dương nên �,(�−1)a,(a−1) là hai số tự nhiên liên tiếp .
⇒�(�−1)⇒a(a−1) chia hết cho 2. Tương tự ta có : �(�−1);�(�−1);�(�−1)b(b−1);c(c−1);d(d−1) đều chia hết cho 2.
⇒�(�−1)+�(�−1)+�(�−1)+�(�−1)⇒a(a−1)+b(b−1)+c(c−1)+d(d−1) là số chẵn .
Lại có : �2+�2=�2+�2⇒�2+�2+�2+�2=2(�2+�2)a2+c2=b2+d2⇒a2+b2+c2+d2=2(b2+d2) là số chẵn .
Do đó : �+�+�+�a+b+c+d là số chẵn mà �+�+�+�>2a+b+c+d>2 (Do �,�,�,�∈N∗a,b,c,d∈N∗)
Vậy : �+�+�+�a+b+c+d là hợp số .
https://h.vn/hoi-dap/question/21757.html
bn vào link này là có nhé
Ta có: a2 + c2 = b2 + d2
( a2 + c2 ) - ( b2 + d2 ) = 0
( a2 + 2ac + c2 ) - ( b2 + 2bd + d2 ) = 2ac - 2bd
( a + c )2 - ( b + d )2 = 2( ac - bd )
a + c \(\equiv\) b + d ( mod 2 )
a + c + b + d \(⋮\) 2
Mà a + c + b + d > 2
Vậy a + b + c + d là hợp số
Ta có: a+b+c+d-(a+b+c+d) = a(a-1)+b(b-1)+c(c-1)+d(d-1) Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp => a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2 => a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2 Hay a+b+c+d-(a+b+c+d) chia hết cho 2 <=> 2( a+b) - (a+b+c+d) chia hết cho 2 (Vì a+b=c+d) Vì 2( a+b) chia hết cho 2, a+b+c+d-(a+b+c+d) chia hết cho 2 => a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương) Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Ta có:
a^2+b^2=c^2+d^2 => a^2+b^2+c^2+d^2=2.(a^2+b^2)
=>a^2+b^2+c^2+d^2 chia hết cho 2 (1)
Lại có: a^2+b^2+c^2+d^2 - (a+b+c+d) = (a^2-a) + (b^2-b) + (c^2-c) + (d^2 - d)
= a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1)
Do a.(a-1), b.(b-1), c,(c-1), d.(d-1) là các tích của 2 Số liên tiếp
=> 4 tích a.(a-1), b.(b-1), c,(c-1), d.(d-1) đều chia hết cho 2
=>a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1) chia hết cho 2 <=> a^2+b^2+c^2+d^2 - (a+b+c+d) chia hết cho 2 (2)
Từ (1) và (2) có: a+b+c+d chia hết cho 2
Mà a,b,c,d là các số nguyên dương => a+b+c+d >2
Vậy a+b+c+d là hợp số
Ta có: a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d)
= a(a-1)+b(b-1)+c(c-1)+d(d-1)
Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp
=> a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2
=> a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2
Hay a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
<=> 2( a\(^2\)+b\(^2\)) - (a+b+c+d) chia hết cho 2 (Vì a\(^2\)+b\(^2\)=c\(^2\)+d\(^2\))
Vì 2( a\(^2\)+b\(^2\)) chia hết cho 2, a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
=> a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn
Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương)
Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)
\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)
Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp
\(\Rightarrow a-1⋮2\)
Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2
=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn
Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.
Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))
\(\Rightarrow\) $a + b + c + d$ là hợp số.