Chứng minh bất đẳng thức :
x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(x-1)(x-3)(x-4)(x-6)+9=(x2-7x+6)(x2-7x+12)+9
Đặt x2-7x+6=y
<=>y(y+6)+9=y2+6y+9=(y+3)2 lớn hơn hoặc bàng 0
Một cửa hàng ngày đầu bán được 3 tạ 16 kg gạo, ngày sau bán được hơn ngày đầu 3,5 yến. Hỏi cả hai ngày bán đươc bao nhiêu tạ gạo ?
https://hoc247.net/hoi-dap/toan-8/chung-minh-a-x-10-x-9-x-4-x-1-0-faq392123.html
\(x^2+xy+y^2+1>0\)
\(\Leftrightarrow x^2+2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>1\)
=>ĐPCM
\(x^4+x^2+2>0\)
\(\Leftrightarrow\left(x^2\right)^2+2x^2.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2+\frac{7}{4}>\frac{7}{4}\)
=>ĐPCM
\(\left(x+3\right)\left(x-11\right)+2003>0\)
\(\Leftrightarrow x^2-8x-33+2003>0\)
\(\Leftrightarrow x^2-8x+16+1954>0\)
\(\Leftrightarrow\left(x-4\right)^2+1954>1954\)
=>ĐPCM
\(-9x^2+12x-15< 0\)
\(\Leftrightarrow-\left(3x^2+2.3.2x+4+11\right)< 0\)
\(\Leftrightarrow-\left[\left(3x+2\right)^2+11\right]< 11\)
=>ĐPCM
\(-5-\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-x-2\right)< 0\)
\(\Leftrightarrow-5-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)< 0\)
\(\Leftrightarrow-5-\left[\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\right]< \frac{-11}{4}\)
=>ĐPCM
Đặt √x = t, x ≥ 0 => t ≥ 0.
Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)
Nếu t = 0, t = 1, f(t) = 1 >0
Với 0 < t <1, f(t) = t8 + (t2 - t5)+1 - t
t8 > 0, 1 - t > 0, t2 - t5 = t3(1 – t) > 0. Suy ra f(t) > 0.
Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0
Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0.