chứng minh rằng trong một hình bình hành , tổng bình phương các cạnh bằng tổng bình phương của 2 đường chéo .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rong hbh ABCD, xét tam giác abc
(1): ac^2 = ab^2 + bc^2- 2.ab.bc.cosB
=> ab^2 + bc^2=ac^2 + 2.ab.bc.cosB
(2): vì da=bc+. da^2 + cd^2 =bc^2 +cd^2
tương tự (1) ta có bc^2 + cd^2 = bd^2+2.bc.cd.cosC
từ (1) và (2), ta có ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 + 2ab.bc.cosB + 2bc.cd.cosC
vì:
- góc B+C=180 => cosC = -cosB
- ab=cd
=>2ab.bc.cosB + 2bc.cd.cosC =0
Vậy => ab^2 + bc^2 + cd^2 + da^2=ac^2 +bd^2 (đpcm)
giả sử ta có hình bình hành ABCD
ta có \(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}\Rightarrow AC^2=AB^2+BC^2+2.AB.BC.cos\left(BAD\right)\)
\(\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{CD}\Rightarrow BD^2=BC^2+CD^2+2BC.CDcos\left(ABC\right)\)
Nên \(AC^2+BD^2=AB^2+BC^2+CD^2+AD^2+2AB.BC.\left[cos\left(ABC\right)+cos\left(BAD\right)\right]\)
\(=AB^2+BC^2+CD^2+AD^2\)
do đó ta có điều phải chứng minh
Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O
\(AB^2=0A^2+OB^2\)
\(CD^2=OC^2+OD^2\)
\(AD^2=OA^2+OD^2\)
\(BC^2=OB^2+OC^2\)
\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)
\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)
Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)
hình :
ta có : \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)
\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AD}+\overrightarrow{CD}\right)^2=\left(\overrightarrow{AC}+\overrightarrow{BD}\right)^2\)
\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{AB}.\overrightarrow{BC}+2\overrightarrow{BC}.\overrightarrow{AD}+2\overrightarrow{AD}.\overrightarrow{CD}+2\overrightarrow{CD}.\overrightarrow{AB}=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\)
\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{BC}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+2\overrightarrow{CD}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\)
\(\Leftrightarrow AB^2+BC^2+AD^2+CD^2+2\overrightarrow{BC}.\overrightarrow{AC}+2\overrightarrow{CD}.\overrightarrow{AC}=AC^2+BD^2+2\overrightarrow{AC}.\overrightarrow{BD}\)vậy tổng bình phương các cạch bằng tổng bình phương của 2 đường chéo (đpcm)