Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp
Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa
Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8 cách xếp
Chọn đáp án B
Ta xếp các cuốn sách cùng một bộ môn thành một nhóm
Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: 3!=6 cách xếp
Với mỗi cách xếp 3 nhóm đó lên kệ ta có 5! cách hoán vị các cuốn sách Toán, 6! cách hoán vị các cuốn sách Lý và 8! cách hoán vị các cuốn sách Hóa
Vậy theo quy tắc nhân có tất cả: 6.5!.6!.8! cách xếp
Chọn đáp án B.
Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .
Để tìm số phần tử của A, ta tìm số phần tử của biến cố , tức sau khi tặng sách có môn không còn lại cuốn nào.
Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:
Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa
+) 4 cuốn sách Toán tặng cho 4 người trong 5 người, có cách.
+) 1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .
Suy ra có cách tặng sao cho không còn sách Toán.
Tương tự, có cách tặng sao cho không còn sách Lý.
Tương tự, có cách tặng sao cho không còn sách Hóa.
Suy ra số phần tử của biến cố là.720+2520+2520=5760
Suy ra số phần tử của biến cố A là.30240-5760=24480
Vậy xác suất cần tính
Chọn C.
Đáp án B
Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.
Khi đó ta có biến cố: A ¯ : “Số cuốn sách còn lại của thầy Tuấn không có đủ cả 3 môn”.
Chọn C
Xét phép thử T: “Chọn 7 cuốn sách từ 15 cuốn sách”.
Số phần tử của không gian mẫu trong phép thử là C 15 7 .
Gọi A biến cố chọn 7 cuốn sách có đủ 3 môn trong phép thử T.
Xác suất của biến cố cần tìm bằng xác suất của biến cố A.
Ta có
Vậy
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
A.39600
B. 720
C.30888
D. 38880
Nghĩa là loại đi trường hợp xếp mà có sự xuất hiện của bộ Lý-Hóa-Lý nằm đúng như vầy, sát nhau đồng thời Hóa kẹp giữa 2 Lý
Tổng số cuốn sách Toán và Lý là : \(3+4=7\) (cuốn)
Chọn 1 trong 7 cuốn sách khác nhau gồm Toán và Lý trên có
\(C^1_7=7\) ( cách )
Vậy có 7 cách chọn 1 cuốn sách trong số các cuốn trên.
Số cách chọn 1 cuốn sách trong số 7 cuốn sách: \(C_7^1\)
Đáp án là A.
• Ta tìm số cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn.
Có 3 trường hợp :
• 7 cuốn còn lại gồm 2 môn toán lý : có C 9 7 cách
• 7 cuốn còn lại gồm 2 môn lý hóa : có C 11 7 cách
• 7 cuốn còn lại gồm 2 môn toán hóa : có C 10 7 cách
Suy ra có C 9 7 + C 11 7 + C 10 7 = 486 cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn. Do đó số cách chọn 8 cuốn sao cho 7 cuốn còn lại có đủ 3 môn là C 15 7 - 486 = 5949 cách.
Xác suất cần tìm là P = 5949 C 15 7 = 661 715
Đáp án là A.
• Ta tìm số cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn.
Có 3 trường hợp :
• 7 cuốn còn lại gồm 2 môn toán lý : có C 9 7 cách
• 7 cuốn còn lại gồm 2 môn lý hóa : có C 11 7 cách
• 7 cuốn còn lại gồm 2 môn toán hóa : có C 10 7 cách
Suy ra có C 9 7 + C 11 7 + C 10 7 = 486 cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn. Do đó số cách chọn 8 cuốn sao cho 7 cuốn còn lại có đủ 3 môn là C 15 7 − 486 = 5949 cách.
Xác suất cần tìm là P = 5949 C 15 7 = 661 715 .
`Loại 1: chọn tùy ý 7 cuôn từ 19 cuốn C719 = 50388 cách
Loại 2: chọn 7 cuốn từ 2 môn
TH1: hóa +lí : C711 = 330
TH2: lí+ toán: C714 = 3432
TH3: hóa+ toán: C713 = 1716
tổng = 5478
ta có: loại 1 - loại 2 = 50388-5478=44910( cách)