tìm đạo hàm
\(y=xe^x\ln x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=\left(\dfrac{x}{lnx}\right)'.3^{\dfrac{x}{lnx}}.ln3=\dfrac{lnx-1}{ln^2x}.3^{\dfrac{x}{lnx}}.ln3\)
2.
\(y'=\left(tanx\right)'.tanx+\left(tanx\right)'.\dfrac{1}{tanx}=\dfrac{tanx}{cos^2x}+\dfrac{1}{tanx.cos^2x}\)
3.
\(y=\left(ln2x\right)^{\dfrac{2}{3}}\Rightarrow y'=\left(ln2x\right)'.\dfrac{2}{3}.\left(ln2x\right)^{-\dfrac{1}{3}}=\dfrac{1}{3x\sqrt[3]{ln2x}}\)
Tìm đạo hàm của các hàm số:
a) \(y = {9^x}\) tại \(x = 1\);
b) \(y = \ln x\) tại \(x = \frac{1}{3}\).
a) Ta có: \(y' = {\left( {{9^x}} \right)^\prime } = {9^x}\ln 9\).
Từ đó: \(y'\left( 1 \right) = {9^1}\ln 9 = 9\ln 9\).
b) Ta có: \(y' = {\left( {\ln x} \right)^\prime } = \frac{1}{x}\).
Từ đó: \(y'\left( {\frac{1}{3}} \right) = \frac{1}{{\frac{1}{3}}} = 3\).
g: \(y=ln\left(x^2+x+1\right)\)
=>\(y'=\dfrac{\left(x^2+x+1\right)'}{x^2+x+1}=\dfrac{2x+1}{x^2+x+1}\)
l: \(y=\dfrac{lnx}{x+1}\)
=>\(y'=\dfrac{\left(lnx\right)'\cdot\left(x+1\right)-\left(x+1\right)'\left(lnx\right)}{\left(x+1\right)^2}\)
=>\(y'=\dfrac{\dfrac{1}{x}\left(x+1\right)-lnx}{\left(x+1\right)^2}\)
\(\Leftrightarrow y'=\dfrac{\dfrac{\left(x+1\right)}{x}-lnx}{\left(x+1\right)^2}\)
ta có:
\(y'=e^xlnx+xe^xlnx+xe^x\frac{1}{x}=e^x\left(lnx+xlnx+1\right)\)