K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

tính đạo hàm của y ạ.ko phải tính giới hạn đâu a

5 tháng 10 2015

ta có

\(y=\frac{\left(e^x+e^{-x}\right)\left(e^x+e^{-x}\right)-\left(e^x-e^{-x}\right)\left(e^x-e^{-x}\right)}{\left(e^x+e^{-x}\right)^2}=\frac{\left(e^x+e^{-x}\right)^2-\left(e^x-e^{-x}\right)^2}{\left(e^x+e^x\right)^2}=\frac{\left(e^x+e^{-x}+e^x-e^{-x}\right)\left(e^x+e^{-x}-e^x+e^{-x}\right)}{\left(e^x+e^{-x}\right)^2}=2\frac{e^x-e^{-x}}{\left(e^x+e^{-x}\right)^2}=\frac{2}{e^x+e^{-x}}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với x bất kì và \(h = x - {x_0}\), ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_0} + h}} - {e^{{x_0}}}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_o}}}\left( {{e^h} - 1} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{{e^h} - 1}}{h} = {e^{{x_0}}}\end{array}\)

Vậy hàm số \(y = {e^x}\)  có đạo hàm là hàm số \(y' = {e^x}\)

b) Ta có \({a^x} = {e^{x\ln a}}\,\)nên \(\left( {{a^x}} \right)' = \left( {{e^{x\ln a}}} \right)' = \left( {x\ln a} \right)'.{e^{x\ln a}} = {e^{x\ln a}}\ln a = {a^x}\ln a\)

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^x-\frac{1}{e^x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{e^x\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x.\frac{\sin x}{2x}.e^x}\)

   \(=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x}.\frac{1}{\frac{\sin x}{x}}.\frac{2}{e^x}=1.\frac{1}{1}.\frac{2}{1}=2\)

18 tháng 12 2019

1/2

12 tháng 5 2016

Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)

\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)

11 tháng 8 2018

Chọn D.

Hoành độ giao điểm của hai đường là nghiệm của phương trình (e+1)x =  ( 1 + e x ) x <=> x = 0 hoặc x =1 

 

Diện tích cần tính là S =  ∫ 0 1 x e x d x -   ∫ 0 1 e x d x   = ∫ 0 1 x d ( e x ) - e ∫ 0 1 x d x

 

26 tháng 1 2019

Chọn C

9 tháng 7 2019

Chọn D

16 tháng 7 2019

Đáp án B.