Một vật dao động điều hoà với phương trình \(x=5\cos(5\pi t+\frac \pi 3)(cm)\). Biết ở thời điểm t có li độ là 3cm. Li độ dao động ở thời điểm sau đó 1/10(s) là
A.\(\pm\)4cm
B.3cm.
C.-3cm.
D.2cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kỳ: \(T=\frac{2\pi}{5\pi}=0,4s\)
Trong thời gian 1/30 s thì véc tơ quay đã quay một góc: \(\frac{1}{30.0,4}.360=30^0\)
TH1: vật đang có li độ 3cm theo chiều dương --> véc tơ quay thêm 300 thì vật sẽ đến li độ 4,6cm.
TH2: vật đang có li độ 3cm theo chiều âm --> véc tơ quay thêm 300 thì vật sẽ đến li độ 0,6cm.
Biểu diễn dao động bằng véc tơ quay, trong thời gian 0,25s véc tơ quay một góc: \(0,25.4\pi=\pi\)(rad)
Véc tơ quay quay góc 1800, thì li độ có giá trị -4cm.
Sao biết pi quay 180 độ v bạn . -4 mình cũng k biết nữa . mong bạn chỉ
Chọn A
+ Ở thời điểm t: x = 5cos(5πt + π/3) = 3 cm
=> cos(5πt + π/3) = 3/5 => sin(5πt + π/3) = ± 4/5
+ Ở thời điểm (t + 1/10): x = 5cos[5π(t + 1/10) + π/3] = 5cos(5πt + π/3 + π/2) = -5sin(5πt + π/3) = ±4cm.
Bạn xem ở đây nhá, có bạn hỏi bài này rồi Câu hỏi của Phạm Hoàng Phương - Vật lý lớp 12 | Học trực tuyến
Để tính vị trí của vật điều hoà tại thời điểm 1/3 giây sau khi vật có li độ x = 3cm, chúng ta cần tính giá trị của x tại thời điểm đó.
Phương trình vật dao động điều hoà đã cho là: x = 6cos(2πt - π/6) (cm)
Để tìm thời điểm 1/3s tiếp theo, ta thay t = 1/3 vào phương trình trên:
x = 6cos(2π(1/3) - π/6) = 6cos(2π/3 - π/6) = 6cos(π/2) = 6 * 0 = 0 (cm)
Vậy, tại thời điểm 1/3s tiếp theo, vật sẽ ở li độ x = 0cm.
Có một sự thật là dạo này toàn học tiếng anh, chả đả động gì tới lý nên nhìn các bạn gửi bài lên mà bận ko giải được, thấy buồn buồn :<
Ta sẽ tính xem tại thời điểm nào thì vật có li độ là 3cm
\(3=5\cos\left(5\pi t+\frac{\pi}{3}\right)\Leftrightarrow\cos\left(5\pi t+\frac{\pi}{3}\right)=\frac{3}{5}\)
Tại thời điểm \(t+\frac{1}{10}\left(s\right)\Rightarrow x=5\cos\left(5\pi\left(t+\frac{1}{10}\right)+\frac{\pi}{3}\right)\left(cm\right)\)
\(=5\cos\left(5\pi t+\frac{1}{2}\pi+\frac{1}{3}\pi\right)=-5\sin\left(5\pi t+\frac{1}{3}\pi\right)\)
\(\sin^2\left(5\pi t+\frac{1}{3}\pi\right)+\cos^2\left(5\pi t+\frac{1}{3}\pi\right)=1\Rightarrow\sin\left(5\pi t+\frac{1}{3}\pi\right)=\pm\frac{4}{5}\)
\(\Rightarrow x=\pm4\left(cm\right)\)
Phương trình dạo động là: \(x=4cos\left(2\pi t+\dfrac{\pi}{3}\right)cm\)
Chu kì dao động là: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{2\pi}=1\left(s\right)\Rightarrow0,25=\dfrac{T}{4}\)
Tại thời điểm t1, vật có li độ đang giảm và có giá trị 2cm
\(\Rightarrow\Delta\varphi=\dfrac{\pi}{3}\)
Tại thời điểm t2 = t1 + 0,25, vật quay một góc \(\dfrac{\pi}{2}\) so với thời điểm t1.
\(\Rightarrow x_2=-\dfrac{A\sqrt{3}}{2}=-\dfrac{4\sqrt{3}}{2}=-2\sqrt{3}\left(cm\right)\)
Chọn A.
Chu kì: \(T=\frac{2\pi}{5\pi}=0,4s\)
Trong thời gian 1/10 s = 1/4 T thì véc tơ quay đã quay một góc: 360/4 = 900.
Biểu diễn bằng véc tơ quay, ta dễ dàng tìm đc li độ thời điểm sau đó 1/10 s là 4 và -4cm.
Chọn A.