K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB và ΔAHC có 

AB=AC(ΔBAC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH\(\perp\)BC tại H

b) Xét ΔADM và ΔBHM có 

\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)

MA=MB(M là trung điểm của AB)

\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔBHM(g-c-g)

Suy ra: AD=BH(hai cạnh tương ứng)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=20^2-12^2=256\)

hay AH=16(cm)

26 tháng 7 2021

Thanks ạ :33

c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có 

AN chung

\(\widehat{KAN}=\widehat{QAN}\)

Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)

Suy ra: AK=AQ(hai cạnh tương ứng) 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: góc DAH=góc HAC=góc DHA

=>ΔDAH cân tại D

=>góc DHB=góc DBH

=>DH=DB=DA
=>D là trung điểm của AB

=>DH=1/2AB

12 tháng 5 2023

mình đg cần câu c bạn biết làm câu c không

 

Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.                                                                 a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H                                                                             b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.                             ...
Đọc tiếp

Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.                                                                 

a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H                                                                             

b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.                                                                   

 c,Tia phân giác của góc BAD cắt tai CB tại N. Kẻ NK ⊥AD tại K. NQ ⊥AB tại Q. Chứng minh AQ=AK và ANQ=35độ + 1/4 BAC.                                                                                                                                                                                                                                           d, CD cắt AB tại S. Chứng minh BC<3 ×AS.                                                                                                                                                                                                                                                      (vẽ hình cho em với ạ giúp em ạ)

0

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

6 tháng 2 2022

bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với

23 tháng 11 2016

Ta có hình vẽ sau:

A H D B C 1 2 M N

a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)

Xét ΔABH và ΔDBH có:

BH là cạnh chung

\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)

AH = DH (gt)

=> ΔABH = ΔDBH (c.g.c) (đpcm)

b) Vì ΔABH = ΔDBH (ý a)

=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)

= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)

c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

BC là cạnh chung

\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)

AB = DB (cm tên)

=> ΔABC = ΔDBC(c.g.c)

=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)

d) Vì ΔABH = ΔDBH (ý a)

=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB

=> NB = ND = \(\frac{1}{2}\)DB

=> N là trung điểm của BD(đpcm)

23 tháng 11 2016

câu a) có nhầm ko z bn?

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

24 tháng 11 2016

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

c: Xét ΔACD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔACD cân tại C

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

DO đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)